HEWLETT
 hp PACKARD

1966-1967
Index of ELECTRONIC MEASURING EQUIPMENT

HEWLETT hP PACKARD

TO USE THE INDEX OF ELECTRONIC MEASURING EQUIPMENT
Refer to the opposite page, find the classification of interest, and turn to the appropriate page. Equipment descriptions are necessarily concise, with some specifications stated only at their optimum * point, etc. Complete technical information may be readily obtained from the Hewlett-Packard office nearest you llisted on inside back cover). The field engineer there will promptly send a data sheet, and will gladly discuss your specific application requirements.

ABOUT HEWLETT-PACKARD

From research-and-development laboratories and manufacturing facilities throughout the free world come Hewlett-Packard electrenic measuring instruments...carefully designed and built to provide you with the greatest possible usefulness, accuracy, convenience, dependability and dollar value.

Now in its second quarter-century of growth, Hewlett-Packard is recognized as a major progressive source of instrumentation offering a standard of quality unmatched in the electronic test equipment field. Hewlett-Packard is also a leading supplier of medical diagnostic and patient monitoring equipment, as well as instruments
for chemical and nuclear measurement.
To assure concentrated effort in developing true state-of-the-art measuring tools, plus specialized manufacturing experience and know-how that assures instrument quality and reliability, Hewlett-Packard is organized into the product-centered divisions and affiliates listed below.

And to provide complete applications assistance and after-sale back-up, HewlettPackard has more than 100 field engineering offices situated around the world. The inside back cover lists nearby offices serving your area; give the field engineers there a call next time you have a measurement need.

COLORADO SPRINGS DIVISION

Colorado Springs, Colorado-Oscilloscopes, pulse generators and related instruments.

DYMEC DIVISION

Palo Alto, California-Digital data acquisition and processing instruments and systems, plus specialized test equipment for other applications.

F \& M SCIENTIFIC DIVISION

Avondale, Pennsylvania-Gas chromatographs, C-H-N analyzers, osmometers, viscometers and other equipment for chemical measurements.

FREQUENCY \& TIME DIVISION

Palo Alto, California-Electronic counters, digital recorders, frequency and time standards, nuclear instrumentation.

HP ASSOCIATES

Palo Alto, California-Advanced solid-state components including hot carrier and step recovery diodes, microwave switches, photoconductors, optoelectronic devices.

HARRISON DIVISION

Berkeley Heights, New Jersey-Highly regulated dc power supplies and related equipment.

HEWLETT-PACKARD Ltd.

South Queensferry, Scotland-Communications test equipment for world-wide sales; also many of Hewlett-Packard's most widely used instruments for the British, EFTA and Commonwealth markets.

HEWLETT ҺP PACKARD

HEWLETT-PACKARD G.m.b.H.

Böblingen, West Germany-Pulse generators, industrial recorders for world-wide sales; also many of Hewlett-Packard's most widely used instruments for the European Common Market.

LOVELAND DIVISION

Loveland, Colorado-Voltmeters, oscillators, amplifiers, distortion analyzers, resistance and dc voltage standards, other general-purpose test equipment.

MICROWAVE DIVISION

Palo Alto, California-Sweep oscillators, signal generators, waveguide and coaxial test equipment, spectrum analyzers, specialized test equipment for use at microwave frequencies.

MOSELEY DIVISION

Pasadena, California-X-Y recorders, strip-chart recorders for laboratory and industrial applications, plus related accessory items.

ROCKAWAY DIVISION

Rockaway, New Jersey-Impedance measuring equipment, plus special-purpose signal generators and air navigation test sets.

SANBORN DIVISION

Waltham, Massachusetts-Recording systems and instruments for measuring and recording physical phenomena. Also medical diagnostic apparatus, including patient monitoring equipment.

YOKOGAWA-HEWLETT-PACKARD Ltd.

Tokyo, Japan-Impedance measuring instruments, oscillators, power supplies for world-wide sales; also many of Hewlett-Packard's most widely used instruments for the Japanese market.

CONTENTS

VOLTAGE, CURRENT, RESISTANCE
MEASUREMENT 2
DC voltage measurement, standards 2
Digital voltmeters 3
AC voltage measurement. 4
Frequency-selective voltmeters 4
Multi-function meters 5
Current measurement 5
Meter calibration 6
Vector voltmeter 6
IMPEDANCE MEASUREMENT 6
Vector impedance meter 6
Universal impedance bridge 7
Q meters 7
RX meter and transistor tester 7
Microwave impedance indicators 7
Impedance, reflection coefficient bridges 8
Slotted line, sections 8
WAVEFORM, DISTORTION ANALYZERS 8
OSCILLOSCOPES 9
POWER SUPPLIES 14
AMPLIFIERS 20
FREQUENCY, TIME STANDARDS 22
FREQUENCY MEASUREMENT. 23
Plug-in and general-purpose counters 23
Reversible plug-in counter 24
Preset counter 25
Time interval counter 25
Frequency-extending counter accessories 26
Frequency and tachometer indicators 26
Coaxial and waveguide frequency meters 26
SPECTRUM ANALYSIS 27
SIGNAL SOURCES, MODULATORS, ATTENUATORS 27
Frequency synthesizers 27
Pulse and square-wave generators 28
Sweep oscillators, signal generator 29
Oscillators and signal generators 30
Frequency stabilizing synchronizers 32
Communication and air navigation test sets 32
Frequency converters, doublers, mixers 33
Attenuators, modulators 33
COAXIAL AND WAVEGUIDE INSTRUMENTS 34
POWER MEASUREMENT 36
MICROWAVE NOISE FIGURE MEASUREMENT 37
RECORDING AND DATA ACQUISITION. 38
$X-Y$ recorders and accessories 38
Event recorders. 39
Continuous-chart recorders (1, 2 channels) 40
Thermal recording systems. ($4,6,8$ channels) 41
Optical recording systems (to 25 channels) 42
Magnetic tape recording systems (7, 14 channels) 43
Digital data acquisition systems 43
Digital data plotting systems 45
Digital system elements
(scanners, recorders, etc.) 45
NUCLEAR MEASUREMENT 47
TEMPERATURE MEASUREMENT. 48

3420B DC Differential Voltmeter/Ratiometer

419A DC Null Voltmeter

735A DC Transfer Standard

DC voltage measurement, standards

Hewlett-Packard dc null voltmeters, dc differential voltmeters and dc standards... for unprecedented accuracy, stability, sensitivity and convenience on the production line or quality assurance bench, in the

R\&D or standards laboratory. Use the hp dc transfer standard and null voltmeter for making precise standard dc voltage measurements where they're needed.

Instrument	Performance	Model	Price
DC standard and differential voltmeter for calibrating digital and differential VM's, use as high-voltage dc standard source, for dc standard transfer measurements, standard cell comparisons, as low-level null detector, for precision low-level measurements.	DC standard: $\pm 0.002 \%$ accuracy, $1-1000 \mathrm{~V}$ full scale, floating, guarded input; high stability, regulation. DC differential voltmeter: $\pm 0.005 \%$ accuracy, $1 \mu \mathrm{~V}$ to 1000 V null ranges, 1 ppm resolution at full scale, 6 digits. DC high z $\mathrm{VM}: 1 \mu \mathrm{~V}$ to 1000 V end scale ($\pm 2 \%$ accuracy), $>10^{10}$ ohms input R on most ranges. Amplifier: gain to $60 \mathrm{db}, \pm 0.001 \%$ linearity.	$740 B$	\$2350
AC and DC differential voltmeter, DC standard adds ac capability, $20 \mathrm{~Hz}-100 \mathrm{kHz}$, to dc standard and differential VM measurements. Useful also as dc standard, high Z ac or dc VM, voltage or power amplifier. Recorder output.	AC differential voltmeter: $\pm 0.05 \%$ to $\pm 0.2 \%$ accuracy $1-1000 \mathrm{~V}$ end scale, $1 \mathrm{M} \Omega /(<5 \mathrm{pf})$ input Z. DC differential VM: 0.02% accuracy, 1 to 1000 V end scale, input $Z>10^{9}$ ohms. DC standard: 0 to $1000 \mathrm{~V}, 6$-digit resolution, $\pm 0.02 \%$ accuracy; $\pm 0.02 \%$ power amplifier, 0 to 1 kV .	741 A	\$1475
DC differential voltmeter/ratiometer for standard cell comparisons, precision low-level measurements. Fully floating input for attenuator and linearity tests. Resistance and voltage ratios. Recorder output. DC high Z voltmeter.	DC differential voltmeter: \pm (0.002% of reading + 0.0001% of range) 1.1 to 1100 V full scale, 4 ranges, 0.2 ppm resolution at full scale, 6 voltage decade dials. Input R infinite 1 and 10 V ranges, $10 \mathrm{M} \Omega$ other ranges. Ratiometer: $\pm(0.002 \%$ of reading $+0.0002 \%$ of range) $R \times 1$ to $R \times 0.001$, 4 ranges. DC high $Z \mathrm{VM}: 10 \mu \mathrm{~V}$ to 1000 V end scale ($\pm 3 \%$ of end scale), 9 ranges.	3420 A3420 B(ac line and rechargeable batteries)	$\begin{aligned} & \$ 1175 \\ & \$ 1300 \end{aligned}$
DC null voltmeter is portable and batteryoperated. Useful as sensitive null detector for bridge measurements, floating VM measurements, thermocouples, general-purpose VM and/or null detector, dc amplifier.	Internal bucking voltage for measuring high-Z source voltages; $0.1 \mu \mathrm{~V}$ resolution, $<0.5 \mu \mathrm{~V}$ drift/ day; $>80 \mathrm{db}$ superimposed ac rejection, overload to $1200 \mathrm{~V} ; \pm 3 \mu \mathrm{~V}$ to $\pm 1 \mathrm{kV}$ zero center scale VM , accuracy $\pm 2 \%$ of end scale $\pm 0.1 \mu \mathrm{~V}$.	419A	\$450
DC null voltmeter with high input impedance, stability; low noise, input isolated from ground. Useful as dc amplifier.	$\pm 1 \mathrm{mV}$ to $\pm 1000 \mathrm{~V}$ end-scale range, $\pm 2 \%$ of end scale accuracy; high ac rejection; also, high-gain, low-noise amplifier.	413A	\$350*
DC transfer standard is 1 V reference for volt boxes, potentiometers; standard cell comparator; stable microvolt source; portable, compact; simplifies dc standard work, direct-reading comparisons.	Outputs: 1.00000 V reference; $1.018+(\Delta) ; 1.019$ $+(\Delta) ; 0-1000 \mu \mathrm{~V}$ source with $1 \mu \mathrm{~V}$ resolution ($\Delta=3$-digit direct-reading $0-1000 \mu \mathrm{~V}$ offset voltage); 2 ppm transfer accuracy between std. cells, $10 \mathrm{ppm} / \mathrm{month}$ stability, output floating and guarded.	735A	\$375

*Add $\$ 5$ for rack mount

Digital voltmeters

Select easy-to-use Hewlett-Packard digital voltmeters and get the right combination of performance, reliability and value for every application. Versatile DVM's with plug-in controls can be tailored to many measurements, while integrating and integrating/potentiometric DVM's accurately measure low-level signals in the presence of noise. For accessory equipment and

HO4-3460A High-resolution DVM

	Instrument	Range (full scale)	Accuracy	Speed	Model	Price
DVM with plug-in versatility, choice of manual, automatic, remote ranging; extrahigh sensitivity; ac and dc voltage, direct current, resistance measurements; 4-digit readout; 30 db ac rejection at 60 Hz ; float input pair up to 500 V above chassis ground; ideal bench instrument.		$0.100-1000 \mathrm{~V}$	$\begin{aligned} & \pm 0.05 \% \text { of } \mathrm{rdg} \\ & \pm 1 \text { digit } \end{aligned}$	Fixed: $2-3 / \mathrm{sec}$	3439 A	\$950*
Add BCD output and remote programming to 3439A above: Solid-state instrument can be remotely programmed and provides a printer output; sample rate variable; ideal for low-cost systems (see page 44).		$0.100-1000 \mathrm{~V}$	$\pm 0.05 \%$ of rdg ± 1 digit	Adjustable: 5/sec to $1 / 5 \mathrm{sec}$	3440A	\$1160*
	Manual range unit for manual selection of dc voltage ranges.	$10,100,1000 \mathrm{Vdc}$	$\begin{aligned} & \pm 0.05 \% \text { of } \mathrm{rdg} \\ & \pm 1 \text { digit } \end{aligned}$		3441 A	\$ 40
	Auto range unit for automatic, manual or remote selection of dc voltage ranges.	$10,100,1000 \mathrm{Vdc}$	$\begin{aligned} & \pm 0.05 \% \text { of } \mathrm{rdg} \\ & \pm 1 \text { digit } \end{aligned}$		3442 A	\$ 135
	High gain/auto range unit for automatic, manual or remote selection of dc voltage ranges.	$\begin{aligned} & 100,1000 \mathrm{mV} ; 10,100, \\ & 1000 \mathrm{Vdc} \end{aligned}$	$\begin{aligned} & \pm 0.05 \% \text { of } \mathrm{rdg} \\ & \pm 1 \text { digit } \end{aligned}$		3443 A	\$ 450
	DC multifunction unit for manual selection of dc voltage, direct current, resistance ranges.	Voltage: same as 3443A Current: $100 \mu \mathrm{~A}-1000 \mathrm{~mA}$ Resistance: $1000 \Omega-10 \mathrm{M} \Omega$	$\mathrm{E}: \pm 0.05 \%$ of $\mathrm{rdg} \pm 1$ digit I: $\pm 0.2 \%$ of $\mathrm{rdg} \pm 1$ digit $\mathrm{R}: \pm 0.3 \%$ of $\mathrm{rdg} \pm 1$ digit		3444 A	\$ 575
	AC/DC range unit for automatic, manual or remote selection of ac and dc voltage ranges. Manual function selection.	DC: $10,100,1000 \mathrm{~V}$ AC: $10,100,1000 \mathrm{~V}$ $50 \mathrm{~Hz}-100 \mathrm{kHz}$	DC: $\pm 0.05 \%$ of $\mathrm{rdg} \pm 1$ digit AC: $\pm 0.1 \%$ of $\mathrm{rdg} \pm 2$ digits $50 \mathrm{~Hz}-20 \mathrm{kHz}$		3445 A	\$ 525
	AC/DC remote unit, same as 3445A except also has remote function selection.	Same as 3445A	Same as 3445A		3446 A	\$ 575

*Requires a plug-in unit for operation

Instrument	Range (full scale)	Accuracy	Speed	Model	Price
Integrating DVM measures accurately despite high common mode and superimposed noise; 140 db CMR all noise frequencies; $1 \mu \mathrm{~V}$ sensitivity; full programmability for systems (see pages 43,44).	$0.1,1,10,100,1000 \mathrm{Vdc} ;$ 300% overrange, 6 th digit	$\begin{aligned} & \pm 0.01 \% \text { of rdg } \\ & \pm 0.005 \% \text { of full } \\ & \text { scale } \pm 1 \text { digit } \\ & \text { at } 25^{\circ} \mathrm{C} \end{aligned}$	$1 / \mathrm{sec}$ for 5-digit resolution, $50 / \mathrm{sec}$ for 3-digit	2401C	\$3950
Integrating/potentiometric DVM combines speed and high noise rejection, lab accuracy, $100 \mu \mathrm{~V}$ sensitivity, 5 -digit readout, 150 db CMR, 120% of full scale superimposed noise rejection, pushbutton selection of manual or autoranging.	$10,100,1000 \mathrm{Vdc} ; 20 \%$ overrange, 6th digit	$\begin{aligned} & \pm 0.008 \% \text { of } \mathrm{rdg} \\ & \pm 0.002 \% \text { of } \\ & \text { full scale } \\ & \left(20^{\circ}-30^{\circ} \mathrm{C}\right) \\ & \text { for } 90 \text { days } \end{aligned}$	$\begin{aligned} & 1.7 / \mathrm{sec} \text { to } \\ & 1 / 5 \mathrm{sec} \end{aligned}$	3459A	\$2850
Adds 1 V range, systems speed, $B C D$ output, remote programming to 3459A above; sample rate to $15 / \mathrm{sec}$, front and rear inputs (see systems use, page 44).	$1,10,10 \mathrm{C}, 1000 \mathrm{Vdc} ;$ 20% overrange, 6 th digit	$\begin{aligned} & \pm 0.004 \% \text { of } \mathrm{rdg} \\ & \pm 0.002 \% \text { of } \\ & \text { full scale } \\ & \left(20^{\circ}-30^{\circ} \mathrm{C}\right) \\ & \text { for } 90 \text { days } \end{aligned}$	$15 / \mathrm{sec}$ to $1 / 5 \mathrm{sec}$; 15/sec at 5-digit resolution	3460A	\$3600
Similar to 3460A above except resolution is 1 part in 1.2×10^{6}, sensitivity is $1 \mu \mathrm{~V}$, and stability is $10 \mathrm{ppm} / \mathrm{month}$.	$1,10,100,1000 \mathrm{Vdc}$; 20\% overrange, 7 th digit	$\begin{aligned} & \pm 0.005 \% \text { of rdg } \\ & \text { or } \pm 0.005 \% \\ & \text { of full scale } \end{aligned}$	$1 / \mathrm{sec}$ 6-digit resolution	$\begin{aligned} & \mathrm{HO4-} \\ & 3460 \mathrm{~A} \end{aligned}$	\$4250

AC voltage measurement

400E AC Voltmeter

Hewlett-Packard ac voltmeters offer measurements over a wide frequency range, 1 Hz to 1 GHz , at sensitivities from 0.001 V to 300 V , with high input resistances and low input capacitances. They include solidstate, vacuum-tube and battery-operated meters, a true rms voltmeter, and a differential voltmeter.

A unique incoherent sampling voltmeter (3406A) lets you accurately measure 1 mV to 3 V , from 10 kHz to $1 \mathrm{GHz} \ldots$ with the absolute average value of the input displayed on the meter. Outputs permit recording the ac measurement and plotting the input signal waveform with a pulse height analyzer.

Instrument	Frequency range	Voltage range*	Accuracy**	Model	Price
High-accuracy ac voltmeter has dc output ($\pm 0.5 \%$) for driving DVM's or recorders; useful as high-gain ac amplifier; input impedance $10 \mathrm{M} \Omega / 8-21 \mathrm{pf}$.	$10 \mathrm{~Hz}-10 \mathrm{MHz}$	$\underset{(12 \text { ranges })}{1 \mathrm{mV}-300 \mathrm{~V}}$	$\pm 1 \%$ to $\pm 4 \%$	400 E	\$285
Similar to 400E above except has linear $12 \mathrm{db} \log$ scale uppermost.		$\begin{aligned} & -70 \mathrm{db} \text { to } \\ & +52 \mathrm{db} \\ & \text { (12 ranges) } \end{aligned}$	$\pm 1 \%$ to $\pm 4 \%$	400 EL	\$295
Vacuum-tube voltmeter, also useful as ac amplifier; input impedance $10 \mathrm{M} \Omega / 10-25 \mathrm{pf}$.	$10 \mathrm{~Hz}-4 \mathrm{MHz}$	$\begin{aligned} & 1 \mathrm{mV}-300 \mathrm{~V} \\ & \text { (12 ranges) } \end{aligned}$	$\pm 2 \%$ to $\pm 5 \%$	400D	\$250***
Similar to 400 D above except has 1% accuracy and larger meter.			$\pm 1 \%$ to $\pm 5 \%$	400 H	\$325***
Similar to 400 H above except has linear $12 \cdot \mathrm{db} \log$ scale uppermost.		$\begin{aligned} & -70 \mathrm{db} \text { to } \\ & \text { (} 12 \mathrm{db} \text { ranges) } \end{aligned}$	$\pm 2 \%$ to $\pm 5 \%$	400 L	\$325***
Battery-operated ac voltmeter, input impedance $2 \mathrm{M} \Omega / 20-40 \mathrm{pf}$.	$1 \mathrm{~Hz}-1 \mathrm{MHz}$	$\underset{(12 \text { ranges })}{1 \mathrm{mV}-300 \mathrm{~V}}$	$\pm 3 \%$ to $\pm 5 \%$	403A	\$275
Rechargeable battery ac voltmeter also operates from ac power line, input impedance $2 \mathrm{M} \Omega / 25-50 \mathrm{pf}$.	$5 \mathrm{~Hz}-2 \mathrm{MHz}$	$\begin{aligned} & 1 \mathrm{mV}-300 \mathrm{~V} \\ & \text { (12 ranges) } \end{aligned}$	$\pm 2 \%$ to $\pm 5 \%$	4038	\$310
RMS voltmeter provides actual rms readings of complex ac signals; dc output for driving DVM's or recorders; input impedance $10 \mathrm{M} \Omega / 15-40 \mathrm{pf}$.	$10 \mathrm{~Hz}-10 \mathrm{MHz}$	$\underset{(12 \text { ranges) }}{1 \mathrm{mV}-300 \mathrm{~V}}$	$\pm 1 \%$ to $\pm 5 \%$	3400 A	\$525
RF millivoltmeter, input impedance depends on probe tip.	$500 \mathrm{kHz-1} \mathrm{GHz}$	$\begin{aligned} & 10 \mathrm{mV}-10 \mathrm{~V} \\ & (7 \text { ranges) } \end{aligned}$	$\pm 3 \%$ to $\pm 1 \mathrm{db}$	411A	\$450***
Sampling RF voltmeter has hold button on probe to retain meter indication; output provides true rms measurements when used with 3400A; many accessories; input impedance depends on probe tip used.	$\begin{aligned} & <10 \mathrm{kHz} \text { to } \\ & >1 \mathrm{GHz} \end{aligned}$	$\underset{\text { (} 8 \text { ranges) }}{1 \mathrm{mV}-3 \mathrm{~V}}$	$\pm 3 \%$ to $\pm 8 \%$	3406A	\$650
AC differential voltmeter (see model 741A on page 2); input impedance is $1 \mathrm{M} \Omega /<5 \mathrm{pf}$.	$20 \mathrm{~Hz}-100 \mathrm{kHz}$	$1 \mathrm{~V}-1000 \mathrm{~V}$ end scale (4 ranges)	$\begin{aligned} & \pm 0.05 \% \text { to } \\ & \pm 0.2 \% \text { end } \\ & \text { scale } \end{aligned}$	741A	\$1475

Frequency-selective voltmeters

(See waveform analyzers on page 8.)

Multi-function meters

When it's important to make a variety of measurements with one instrument, select a versatile multifunction meter from Hewlett-Packard. There's the low-cost 427A solid-state, battery-operated meter for maximum value... while the 414A Autovoltmeter offers time-saving "touch and read" convenience, with range, polarity automatically selected in 300 msec .

427A Multi-function Meter
414A Autovoltmeter

Instrument	Voltage range* (accuracy)	Current range* (accuracy)	Resistance range (accuracy)	Model	Price
Autovoltmeter has automatic ranging and polarity; input impedance $10-100 \mathrm{M} \Omega$. 12 dc voltage ranges 12 resistance ranges	$\begin{aligned} & \mathrm{DC}: \pm 5 \mathrm{mV} \text { to } \pm 1500 \mathrm{~V} \\ & (\pm 0.5 \% \text { f.s., } \pm 0.5 \% \mathrm{rdg}) \end{aligned}$		5Ω to $1.5 \mathrm{M} \Omega$ ($\pm 1 \%$ rdg, $\pm 0.5 \%$ f.s.)	414A	\$650
Battery-operated multi-function meter has 10 M sidc input impedance and $10 \mathrm{M} \Omega / 20 \mathrm{pf}$ ac input impedance. 9 dc voltage ranges 10 ac voltage ranges 7 resistance ranges	$\begin{aligned} & \mathrm{DC}: \pm 100 \mathrm{mV} \text { to } \pm 1000 \mathrm{~V} \\ & (\pm 2 \%) \\ & \mathrm{AC}: 10 \mathrm{mV}-300 \mathrm{~V} \\ & 10 \mathrm{~Hz}-1 \mathrm{MHz} \\ & (\pm 2 \%) \end{aligned}$		10Ω to $10 \mathrm{M} \Omega$ midscale ($\pm 5 \%$)	427A	\$195**
Versatile voltmeter has 100 M sdc input impedance and $10 \mathrm{M} \Omega / 1.5 \mathrm{pf}$ ac impedance. 7 dc , ac voltage ranges 11 dc voltage \& current ranges 7 resistance ranges	$\begin{aligned} & \text { DC: } \pm 15 \mathrm{mV} \text { to } \pm 1500 \mathrm{~V} \\ & (\pm 2 \%) \\ & \mathrm{AC}: 0.5 \mathrm{~V}-300 \mathrm{~V} \\ & 20 \mathrm{~Hz}->700 \mathrm{MHz} \\ & (\pm 3 \% \text { at } 400 \mathrm{~Hz}) \end{aligned}$	$\text { DC: } \begin{aligned} & \pm 1.5 \mu \mathrm{~A} \text { to } \\ & \pm 150 \mathrm{~mA} \\ & (\pm 3 \%) \end{aligned}$	10Ω to $10 \mathrm{M} \Omega$ midscale ($\pm 5 \%$)	410C	\$425***
Vacuum-tube voltmeter has $122 \mathrm{M} \Omega \mathrm{dc}$ input impedance and $10 \mathrm{M} \Omega / 1.5 \mathrm{pf}$ ac impedance. 6 dc , ac voltage ranges 7 resistance ranges	$\begin{aligned} & \text { DC: } \pm 1 \mathrm{~V} \text { to } \pm 1000 \mathrm{~V} \\ & (\pm 3 \%) \\ & \text { AC: } 1-300 \mathrm{~V} \\ & 20 \mathrm{~Hz}-700 \mathrm{MHz} \\ & (\pm 3 \%) \end{aligned}$		$\begin{aligned} & 0.2 \Omega \text { to } 500 \mathrm{M} \Omega \\ & (\pm 5 \%) \end{aligned}$	410B	\$245****
DC vacuum-tube voltmeter has $200 \mathrm{M} \Omega$ input impedance. 13 dc voltage ranges 13 direct current ranges 9 resistance ranges	$\text { DC: } \pm 1 \mathrm{mV} \text { to } \pm 1000 \mathrm{~V}$	$\begin{gathered} \text { DC: } \pm 1 \mu \mathrm{~A} \text { to } \pm 1 \mathrm{~A} \\ (\pm 2 \%) \end{gathered}$	1Ω to $100 \mathrm{M} \Omega$ ($\pm 5 \%$ of reading)	412A	\$400*****
DC microvolt-ammeter has $1 \mathrm{M} \Omega$ input impedance. 11 dc voltage ranges 18 direct current ranges	$\begin{gathered} \text { DC: } \pm 10 \mu \mathrm{~V} \text { to } \pm 1 \mathrm{~V} \\ (\pm 3 \%) \end{gathered}$	$\begin{aligned} \mathrm{DC}: & \pm 10 \mathrm{pA} \text { to } \\ & \pm 3 \mathrm{~mA}(\pm 3 \%) \end{aligned}$		425A	\$500*****

*Full scale, except as noted
**Add $\$ 35$ for ac line and battery operation
Current measurement

Instrument		Current range	Accuracy	Frequency range ${ }^{\text {a }}$	Model	Price
DC milliammeter with clip-on probe eliminates direct connection, prevents circuit loading.		$\begin{aligned} & 1 \mathrm{~mA}-10 \mathrm{~A} \text { f.s. } \\ & \text { (9 ranges) } \end{aligned}$	$\pm 3 \%$	dc- 400 Hz	428B	\$600*
	Large aperture current probe for measuring current in large conductors up to $2 \frac{1}{2} 2^{\prime \prime}$ in diameter.	1 mA -10 A f.s.	$\pm 3 \%$	dc-300 Hz	3528A	\$450
	Magnetometer probe for determining magnitude and direction of magnetic fields.	0.1 milligauss to 10 gauss	$\pm 3 \%$		3529A	\$ 75
AC clip-on current probe for use with voltmeters and oscilloscopes; make measurements without breaking or loading circuit; input impedance is 50 milliohms in series with $0.05 \mu \mathrm{H}$.		$1 \mathrm{~mA}-1$ A rms (to 25 A with divider)	$\begin{aligned} & \pm 2 \% \\ & \text { to } 3 \mathrm{db} \end{aligned}$	60 Hz .4 MHz $25 \mathrm{~Hz}-20 \mathrm{MHz}$	$456 A$	\$190
AC clip-on current probe for viewing fast rise waveforms on a wide-band oscilloscope.		$1 \mathrm{mV} / \mathrm{mA}$ sensitivity	$\pm 3 \%$	lower limit is 1700 Hz ; upper limit 40 MHz with 30 pf load	1110A	\$100
Amplifier for 1110A probe above increases probe sensitivity, extends low frequency response.		(with scope) $1 \mathrm{~mA} / \mathrm{cm}$ to $5 \mathrm{~A} / \mathrm{cm}$	$\pm 3 \%$	$50 \mathrm{~Hz} \cdot 20 \mathrm{MHz}$	1111A	\$160

*Add $\$ 5$ for rack-mount version

Meter calibration

Instrument	Voltage range (accuracy)	Frequency range	Model	Price
Voltmeter calibration system measures voltage accuracy and frequency response of voltmeters and oscilloscopes; consists of 3 instruments below (which may be purchased separately) in one enclosure.			K02-738BR	\$1920
Voltmeter calibrator	$300 \mu \mathrm{~V}$-300 V, dc or ac, in 40 steps; (dc: 0.1%; ac: 0.2\%)	$400 \mathrm{~Hz}, \mathrm{rms}$ and p-p; also dc	738BR	\$850
Frequency response test set	$\begin{aligned} & >3 \mathrm{~V} \text { into } \\ & 50 \Omega ;(\pm 0.5 \%) \end{aligned}$	$300 \mathrm{kHz} \cdot 10 \mathrm{MHz}$ in 3 ranges; 5 Hz 10 MHz with 200 SR oscillator	739AR	\$600
Oscillator extends lower frequency limit of 739AR above (also see page 31).			200SR	\$225
AC/DC meter calibrator for voltmeters and ammeters; $1 \mu \mathrm{~A}$-5A current output, dc or ac.	$0.01-1000 \mathrm{~V}$, dc or ac; (dc: 0.2%; ac: 0.4%)	58-62 Hz; also dc	6920B	\$695

Meter accessories

For use with basic measuring instruments (voltmeters, multi-function meters, etc.) and oscilloscopes, HewlettPackard offers a wide selection of accessories in-

Vector voltmeter

Phase and amplitude measurements from 1 MHz to 1 GHz are greatly simplified with the 8405A Vector Voltmeter, which measures the magnitude of each of two input signals and the phase difference between them. Easy to operate, this instrument permits component, network and amplifier characterization quickly and conveniently. Phase difference and magnitude are displayed on front-panel meters with recorder outputs also available. Input signals are applied through convenient probes. Phase range is $\pm 180^{\circ}$ with 0.1° resolution. Amplitude accuracy is $\pm 0.5 \mathrm{db}$ to 700 MHz ,
cluding cables, voltage dividers, connectors, shunt resistors, line-matching transformers-each of which increases the versatility of the particular instrument.

8405A Vector Voltmeter
$\pm 1 \mathrm{db}$ to 1 GHz ; voltage range is 1 mV to 10 V for the reference channel, $100 \mu \mathrm{~V}$ to 10 V full scale for the other channel. Residual noise is $10 \mu \mathrm{~V} .8405 \mathrm{~A}, \$ 2500$.

IMPEDANCE MEASUREMENT

Vector impedance meter

The solid-state 4800A Vector Impedance Meter provides direct-reading impedance measurements 5 Hz -

500 kHz . Impedance magnitude 1 ohm- 10 megohms and phase angle 0 to $\pm 90^{\circ}$ are automatically displayed
on front-panel meters with no balancing or nulling adjustment. Also operates as direct-reading L-C meter 0.1 picofarads to 10,000 microfarads and 1 microhenry to 100,000 henries, measure Q employing " Q by $\Delta f^{\prime \prime}$ technique; oscillator monitor output for frequency counter; optional analog outputs for $x-y$ recorder. Price \$1490.

Universal impedance bridge

Fast, accurate measurements of C, R, L, D and Q are easy with the 4260A Universal Impedance Bridge. Digital readout, automatic decimal indication and simplified controls make it especially suitable for production testing and general measurement uses. A unique circuit electronically compensates for interaction between bridge controls in C and L measurements so balance is achieved with use of a single control. False or "sliding" nulls are eliminated, and direction indicators make range selection and C or L

0 meters

Two general-purpose impedance measuring devices specializing in measurement of low-loss components and circuits. Each is a self-contained system, including the rf source output indicator and reference standards. Model 260A covers $50 \mathrm{kHz}-50 \mathrm{MHz}$, with a Q range

$R X$ meter and transistor tester

The 250A is a self-contained wide-range rf bridge system for use in measuring high-loss components and networks. Transistor measurements can be made with the 13510A Transistor Jig (see below). The 250A covers $500 \mathrm{kHz}-250 \mathrm{MHz}$, resistance range 15 to 100,000 ohms, C range $0-20 \mathrm{pf}$ (to 120 pf with auxiliary

4800A Vector Impedance Meter

4260A Universal Impedance Bridge
balance easy. Price, $\$ 550$ (price f.o.b. Palo Alto, California; for price in other countries, contact local Hewlett-Packard sales office).
of $10-625, C$ range $30-460 \mathrm{pf}$, L range $0.09 \mu \mathrm{~h}-130$ mh ; is priced at $\$ 990$. Model 190A covers 20-260 MHz, Q range of $5-1200, \mathrm{C}$ range $7.5-100 \mathrm{pf}, \mathrm{L}$ range $4 \mathrm{ph}-8.5 \mu \mathrm{~h}$; is priced at $\$ 1075$.
coils), inductance range $0.001 \mu \mathrm{~h}-100 \mathrm{mh}$ (depends on freq.), measurement voltage level 0.05-0.75 V (depends on freq.). Price, $\$ 1795$.
The 13510A is a test jig for use with 250A RX Meter. RF range $500 \mathrm{kHz}-250 \mathrm{MHz}$, external bias range 50 $\mathrm{mA}, 30 \mathrm{~V}$ dc maximum. Price, $\$ 195$.

Microwave impedance indicators*

415E SWR Meter

Instrument	Model	Price
Standing wave indicator tuned VM for swr measurement with slotted lines, detector mounts; direct-reading expanded scale for full-scale indication of 1.3 to 1.0; read in accurate upper portion of scale, using precise attenuator; 70 db calibrated range; $200 \mathrm{k} \Omega$ input impedance for use as null indicator; recorder output; tuned frequency $1000 \mathrm{cps} \pm 2 \%$; max. sensitivity $0.1 \mu \mathrm{v}$.	415B	\$250**
SWR meter low-noise tuned amplifier-voltmeter calibrated in db and swr; measures swr, attenuation, gain, other parameters based on difference between 2 signal levels; low noise figure ($<4 \mathrm{db}$) increases measurement range; use with crystal or bolometer detectors; sensitivity $0.15 \mu \mathrm{v}$ at max. bandwith; 70 db range; accuracy $\pm 0.05 \mathrm{db} / 10 \mathrm{db}$ step; input freq. 1000 Hz , adjustable 7%; bandwith variable $15-130 \mathrm{~Hz}$.	415E	\$350
Ratio meter for reflectometer measurements using swept-frequency techniques to improve measurement coverage; continuous swept-frequency accuracy $\pm 3 \%$; tuned frequency 1000 Hz $\pm 4 \%$; eliminates amplitude variation errors with direct ratio display; four \% reflection ranges $100-3 \%$ f.s.; two swr ranges $1.06-1.9$; four db ranges 0-40 db.	416B	\$590***

[^0]IMPEDANCE MEASUREMENT
continued

Impedance, reflection coefficient bridges

Instrument	Frequency range	Model	Price
VHF bridge; direct reading 2-2000 Ω impedances, -90° to $+90^{\circ}$ phase angle; easier, faster than using slotted lines.	$55-500 \mathrm{MHz}$	803 A	$\$ 1250$
VHF detector for use with 803A bridge; $5 \mu \mathrm{~V}$ sensitivity; fast, simple operation.	$10-500 \mathrm{MHz}$	417 A	$\$ 550$
Reflection coefficient bridge; full range testing of coaxial devices.	$8.2-12.4 \mathrm{GHz}$	X8440A	$\$ 1300$

Slotted line, sections

Instrument	Frequency range	Model	Price
Coaxial slotted line for measuring swr; tunable probe, low residual swr, high accuracy, high stability.	$500 \mathrm{MHz}-4 \mathrm{GHz}$	805C	\$525
Universal probe carriage for operation with 806B coaxial slotted section, 810B waveguide slotted sections, and probes below; high accuracy, stability; fast section inter-change; dial gauge for accuracy; easy to use.		809B	\$175
Coaxial slotted section, 50Ω impedance	$3.0-12.0 \mathrm{GHz}$	806B	\$200
Waveguide slotted sections, G- to P-Bands. (S-Band unit has carriage)	$2.6-18 \mathrm{GHz}$	810A, B	\$90-\$450
Broadband probe, variable penetration in waveguide sections; connect to 440A for sensitive rf detector for slotted waveguide sections		442 B	\$ 50
Detector mount, use with 442B and slotted sections for detecting rf	2.4-12.4 GHz	440A	\$ 85
Untuned probe, high sensitivity	$2.6-18 \mathrm{GHz}$	444A	\$ 55
Universal probe carriage for higher frequency K-and R-Band waveguide slotted sections and probe below.		814B	\$225
Waveguide slotted sections for K- and R-Bands	$\begin{aligned} & 18-26.5 \mathrm{GHz} \\ & 26.5-40 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & \text { K815B } \\ & \text { R815B } \end{aligned}$	$\begin{aligned} & \$ 265 \\ & \$ 265 \end{aligned}$
Untuned probe	$18-40 \mathrm{GHz}$	446B	\$145

WAVEFORM, DISTORTION ANALYZERS

Waveform analyzers

Two waveform analyzers separate input signals into individual frequency components so that fundamental, harmonics, and intermodulation products may be separately measured and evaluated. Both models have automatic frequency control for measuring drifting signals, and may be used as an oscillator-tuned volt-
meter combination for transmission test of systems or devices. Accessory model 297A Sweep Drive lets you sweep through all or any part of the analyzer frequency range for easy semi-automatic plots of various waveform characteristics. Prices: 297A, \$350; HO3297A for 230 V 50 Hz operation, $\$ 375$.

Instrument	Frequency range	Frequency accuracy	Voltage range	Voltage accuracy	Model	Price
Low-frequency analyzer, direct-reading, no calibration required.	$20 \mathrm{~Hz}-50 \mathrm{kHz}$	$\pm(1 \%+5 \mathrm{~Hz})$	$30 \mu \mathrm{~V}-300 \mathrm{~V}$ full scale	$\pm 5 \%$ of full scale	302 A	$\$ 1800 *$

Instrument	Frequency range	Frequency accuracy	Voltage range	Voltage accuracy	Model	Price
High-frequency analyzer, digital frequency readout, 3 bandwidths.	$1 \mathrm{kHz}-1.5 \mathrm{MHz}$	$+(1 \%+300 \mathrm{~Hz})$	$10 \mu \mathrm{~V}-100 \mathrm{~V}$ full scale	$\pm 6 \%$ of full scale	310 A	$\$ 2200$

*Rack mount \$15 less

Distortion analyzers

Four solid-state distortion analyzers offer extended frequency range, greater set level sensitivity, improved selectivity, greater overall accuracy, and unprecedented ease of use. All measure total distortion down to 0.1% full scale. Two models feature automatic fundamental nulling ($>80 \mathrm{db}$ rejection): manually null to $<10 \%$ of set level reference, flip a switch, and nulling is completed automatically; no more tedious tuning on the more sensitive ranges. Two models have a switchable high-pass filter to provide pure distortion measurements on signals $>1 \mathrm{kHz}$ by attenuating all frequencies below 400 Hz . Two models have an AM detector covering 550 kHz to $>65 \mathrm{MHz}$ at carrier

334A Distortion Analyzer
levels as low as 1 V . Other features include common floating input terminals for either distortion or voltage measurements, with floating low-distortion output for oscilloscope or true rms monitoring.

Frequency range	Voltmeter range	Automatic fundamental nulling	High-pass filter	$\begin{gathered} \mathrm{AM} \\ \text { detector } \end{gathered}$	Model	Price
Fundamentals $5 \mathrm{~Hz}-600 \mathrm{kHz}$, harmonic indications to 3 MHz , in 7 ranges.	$300 \mu \mathrm{~V}-300 \mathrm{~V}$ in 13 ranges, with flat response $5 \mathrm{~Hz}-3 \mathrm{MHz}$				331 A	\$590
				X	332A	\$620
		x	X		333A	\$760
Maximum input sensitivity at 0.1% distortion setting corresponds to $300 \mu \mathrm{~V}$ rms for measuring low-level residuals.		X	X	X	334A	\$790

OSCILLOSCOPES

140A, 141A Dual-plug-in Oscilloscopes ...to 20 MHz

140A Oscilloscope, with 20 MHz dual-trace amplifier and sweep delay plug-ins
The 140A Oscilloscope, with a choice of two plug-ins (amplifier and time base) or one double-size specialpurpose plug-in, offers bandwidths to 20 MHz , sensitivities to $10 \mu \mathrm{~V} / \mathrm{cm}$, sweep speeds to $20 \mathrm{nsec} / \mathrm{cm}$; features an extra-bright, post-accelerator 7.5 kV crt, $10 \times 10 \mathrm{~cm}$ internal graticule, beam finder, 1 and 10 $\mathrm{V} \pm 1 \%$ calibrator. Modular cabinet for rack or bench use. Price without plug-ins, $\$ 575$.

141A Oscilloscope is identical to 140A except for addition of variable persistence and storage modes

The 141A Oscilloscope combines plug-in and main frame characteristics of the 140A with variable persistence and trace storage. Allows easy viewing of slowly moving or low rep rate waveforms without flicker, especially useful when measurements must be made at very slow sweep speeds to insure high resolution. Permits display of several sweeps at once when events are separated in time: integrates automatically
by superimposing sweeps. High writing rate captures and stores fast single-shot for careful study; variable persistence from 0.2 sec to 1 min ; normal writing rate to $20 \mathrm{~cm} / \mathrm{msec}$, high writing rate position $>1 \mathrm{~cm} /$ $\mu \mathrm{sec}$; storage >1 hour (for days when turned off). Price without plug-ins, $\$ 1275$.

1415A Time Domain Reflectometer Plug-in

1416A Swept Frequency Indicator Plug-in

Amplifier plug-ins for 140A, 141A	Bandwidth (rise-time)	Calibrated sensitivity	Model	Price
Dual-channel amplifier plug-in offers convenient triggering on channel A or composite; algebraic addition of inputs; has signal delay for viewing leading edges of pulses.	$\begin{aligned} & \mathrm{dc}-20 \mathrm{MHz} \\ & (17.5 \mathrm{nsec}) \end{aligned}$	$5 \mathrm{mV} / \mathrm{cm}-10 \mathrm{~V} / \mathrm{cm}$	1402A	\$550
Dual-channel amplifier plug-in offering differential input, broad bandwidth at low price.	$\begin{aligned} & \mathrm{dc}-5 \mathrm{MHz} \\ & (70 \mathrm{nsec}) \end{aligned}$	$5 \mathrm{mV} / \mathrm{cm}-10 \mathrm{~V} / \mathrm{cm}$	1405A	\$325
Dual-channel amplifier plug-in offering differential input, 40 db CMR; convenient triggering from channel A or composite.	$\begin{aligned} & \text { dc }-450 \mathrm{kHz} \\ & (7.8 \mu \mathrm{sec}) \end{aligned}$	$1 \mathrm{mV} / \mathrm{cm}-10 \mathrm{~V} / \mathrm{cm}$	1401A	\$325
Single-channel amplifier plug-in with differential input, 40 db CMR, selectable bandwidth.	$\begin{aligned} & \mathrm{dc}-400 \mathrm{kHz} \\ & (8.7 \mu \mathrm{sec}) \end{aligned}$	$100 \mu \mathrm{~V} / \mathrm{cm}-20 \mathrm{~V} / \mathrm{cm}$	1400A	\$210
Single-channel amplifier plug-in high sensitivity with guarded differential input, 106 db CMR, selectable bandwidth.	$\begin{aligned} & 0.1 \mathrm{~Hz}- \\ & 400 \mathrm{kHz} \\ & (8.7 \mu \mathrm{sec}) \end{aligned}$	$10 \mu \mathrm{~V} / \mathrm{cm}-100 \mathrm{mV} / \mathrm{cm}$	1403A	\$475

Time base plug-ins for 140A, 141A	Sweep ranges	Triggering	Model	Price
Time base plug-in offering automatic triggering, single sweep, external input.	$0.5 \mu \mathrm{sec} / \mathrm{cm}-5 \mathrm{sec} / \mathrm{cm}$, $\pm 3 \%$; X10 magnifier extends fastest sweep to $50 \mathrm{nsec} / \mathrm{cm}$	Automatic to 500 kHz . level select to $>20 \mathrm{MHz}$; trigger from internal, external or line	1420A	\$325
Time base plug-in with built-in delay generator, calibrated; mixed sweep for slow and fast signal display; external input.	$0.2 \mu \mathrm{sec} / \mathrm{cm}-1 \mathrm{sec} / \mathrm{cm}$ $\pm 3 \%$; $\times 10$ magnifier extends fastest sweep to $20 \mathrm{nsec} / \mathrm{cm}$	Automatic and level select; internal or external to $>20 \mathrm{MHz}$; calibrated delay variable $0.2 \mu \mathrm{sec}-10$ sec ; delay accuracy $\pm 1 \%$, linearity $\pm 0.2 \%$	1421A	\$625

Special-purpose plug-ins for 140A, 141A	Features	Model	Price
Time domain reflectometer tests cables, connectors, strip lines, other broadband devices; step voltage is fed into device under test and reflections from discontinuities are displayed on crt . Indicates both nature (resistive, capacitive, inductive) and precise location of discontinuities. See TDR calibrator below.	150 psec system rise time resolves reflections only 1 inch apart; calibrated in ρ / cm, allowing reflection coefficients as small as 0.001 to be measured, time scale also calibrated directly in distance for air or polyethylene cable; tests polyethylene cable to 600 ft .; x - y recorder outputs.	1415A	\$1050*
Swept frequency indicator speeds, simplifies swept frequency measurements; high resolution, direct db readout; output for $x-y$ recorder; easily determine insertion and return loss of attenuators, filters, isolators, loads (see sweep oscillators on page 29.)	Sensitivity $10 \mathrm{db} / \mathrm{cm}$ to $0.5 \mathrm{db} / \mathrm{cm}$; db offset control permits increased resolution; linear mode $50 \mu \mathrm{~V} / \mathrm{cm}$ to $10 \mathrm{mV} / \mathrm{cm}$, accuracy $\pm 3 \%$; vertical amplifier has both linear and log response.	1416A	\$ 675

*Option 14 extends testing in polyethylene cable to 3000 ft .; $\$ 100$ extra.
Time domain reflectometer calibrator (coaxial susceptance standard); uses a $50-0 \mathrm{hm}$ precision air line with adjustable, calibrated capacitance to serve as a TDR resistance and susceptance standard. Model 874A, \$250

175A Dual-plug-in Oscilloscope ...to 50 MHz

The 175A Oscilloscope offers a $6 \times 10 \mathrm{~cm}$ display on a 12 kV post-accelerator crt with internal graticule. Beam finder locates trace. 24 calibrated sweeps from $0.1 \mu \mathrm{sec} / \mathrm{cm}$ to $5 \mathrm{sec} / \mathrm{cm}, \pm 3 \%$; X10 magnifier extends fastest sweep to $10 \mathrm{nsec} / \mathrm{cm}$. Triggering to $>50 \mathrm{MHz}$. Includes 1% internal calibrator. 14 amplifier and time base plug-ins to choose from, including pushbutton trace recorder. Price without plug-ins, \$1325. (An extra fast writing rate model is available for photographing high-speed transients; ask your Hewlett-Packard field engineer for complete information about the H30-175A.)

175A Oscilloscope, with 1755A Dual-trace 50 MHz Amplifier and 1784A Recorder Plug-ins

Vertical Plug-ins for 175A	Bandwidth (rise-time)	Sensitivity	Model	Price
Dual-channel amplifier plug-in, high sensitivity; algebraic addition of inputs; sync amplifier for triggering on channel $\mathrm{B} ; \mathrm{X} 1$ and X 5 sensitivity modes.	$\begin{aligned} & \mathrm{dc}-50 \mathrm{MHz} \\ & (8.5 \mathrm{nsec}) \end{aligned}$	$10 \mathrm{mV} / \mathrm{cm}-5 \mathrm{~V} / \mathrm{cm}$	1755A	\$575
	$\begin{aligned} & \text { dc- }-40 \mathrm{MHz} \\ & (9 \mathrm{nsec}) \end{aligned}$	$5 \mathrm{mV} / \mathrm{cm}(\mathrm{X} 1)$		
	$\begin{aligned} & \text { dc-20 MHz } \\ & (17 \mathrm{nsec}) \end{aligned}$	$1 \mathrm{mV} / \mathrm{cm}(\times 5)$		
Dual-channel amplifier plug-in, algebraic addition of inputs; sync amplifier for triggering on channel B.	$\begin{aligned} & \text { dc- }-50 \mathrm{MHz} \\ & (8 \mathrm{nsec}) \end{aligned}$	$50 \mathrm{mV} / \mathrm{cm}-20 \mathrm{~V} / \mathrm{cm}$	1750B	\$325
Four-channel amplifier plug-in sync amplifier, triggering on any channel; trace identifier.	$\begin{aligned} & \mathrm{dc}-40 \mathrm{MHz} \\ & (9 \mathrm{nsec}) \end{aligned}$	$50 \mathrm{mV} / \mathrm{cm}-20 \mathrm{~V} / \mathrm{cm}$	1754A	\$595
High-gain differential amplifier plug-in, differential input $5 \mathrm{mV} / \mathrm{cm}$ to $50 \mathrm{mV} / \mathrm{cm}$, with 40 db CMR .	$\begin{aligned} & \mathrm{dc}-18 \mathrm{MHz} \\ & (20 \mathrm{nsec}) \end{aligned}$	$5 \mathrm{mV} / \mathrm{cm}-20 \mathrm{mV} / \mathrm{cm}$	1752A	\$225
	$\begin{aligned} & \text { dc-22 } \mathrm{MHz} \\ & (16 \mathrm{nsec}) \end{aligned}$	$50 \mathrm{mV} / \mathrm{cm}-20 \mathrm{~V} / \mathrm{cm}$		
High-gain, wideband differential amplifier plug-in, differential input with 30 db CMR; two attenuators for mixing different signals; X1 and X10 sensitivity modes.	$\begin{aligned} & \text { dc- }-40 \mathrm{MHz} \\ & (9 \mathrm{nsec}) \end{aligned}$	$\begin{aligned} & 50 \mathrm{mV} / \mathrm{cm}-20 \mathrm{~V} / \mathrm{cm} \\ & (\times 1) \end{aligned}$	1752B	\$285
	$\begin{aligned} & \mathrm{dc}-30 \mathrm{MHz} \\ & (12 \mathrm{nsec}) \end{aligned}$	$5 \mathrm{mV} / \mathrm{cm}(\mathrm{X} 10)$		
Single-channel amplifier plug-in, 9 calibrated sensitivity ranges.	$\begin{aligned} & \text { dc }-50 \mathrm{MHz} \\ & (7 \mathrm{nsec}) \end{aligned}$	$50 \mathrm{mV} / \mathrm{cm}-20 \mathrm{~V} / \mathrm{cm}$	1751A	\$160
Single-channel amplifier and scanner plug-in, provides output for voltmeter, recorder; waveform amplitudes can be digitized and recorded with 1% accuracy; automatic and manual scan.	$\begin{aligned} & \text { dc- }-50 \mathrm{MHz} \\ & (7 \mathrm{nsec}) \end{aligned}$	$50 \mathrm{mV} / \mathrm{cm}-20 \mathrm{~V} / \mathrm{cm}$	H05-1751A	\$525

Special KO1-1759A and KO2-1759A Amplifier Plug-ins with 2.5 nsec rise time are available.

Horizontal plug-ins for 175A	Performance features	Model	Price
Auxiliary plug-in	Allows 175A to perform all standard functions; single sweep included.	1780A	\$ 25
Sweep delay generator plug-in provides calibrated delay times; mixed sweep for slow and fast signal display.	Delay times $0.5 \mu \mathrm{sec}-10 \mathrm{sec}$ with 1% accuracy to $1 \mathrm{sec}, 3 \%$ to 10 sec ; linearity 0.2%; time jitter less than 1 part in 50,000.	1781B	\$325
Display scanner plug-in permits permanent recordings of crt display with $x-y$ or strip-chart recorders.	30 MHz bandwidth; automatic, manual or external scanning.	1782A	\$425
Time mark generator plug-in provides synchronized 0.5\% accuracy intensity modulated time markers on crt trace.	Markers selectable at 10,1 or $0.1 \mu \mathrm{sec}$ intervals; also available for external use.	1783A	\$130
Recorder plug-in provides accurate permanent records of any displayed repetitive signal with pushbutton ease.	Duplicates crt display within $3 \% \pm 1 \mathrm{~mm}, 30 \mathrm{MHz}$ bandwidth. Make 20 recordings for the price of one photograph.	1784A	\$775

OSCILLOSCOPES

DC to 500 kHz Oscilloscopes

Four versatile oscilloscopes offer bandwidths to 500 kHz and sensitivities to $100 \mu \mathrm{~V} / \mathrm{cm}$. Single- and dualchaninel and dual-beam models are available. All have automatic triggering, calibrated sweeps and an internal graticule no-parallax, no-glare $10 \times 10 \mathrm{~cm}$ cathode-ray tube for easy, accurate viewing.

132A Dual-Beam Oscilloscope

Instrument	Bandwidth	Sensitivity	Sweep range	Model	Price
Single-channel scope: 4 calibrated vertical ranges, 15 calibrated sweeps, plus X5 magnifier; phase shift between vertical and horizontal amplifiers $<2^{\circ}$ to 100 kHz ; bearn finder.	dc -450 kHz	$10 \mathrm{mV} / \mathrm{cm}-10 \mathrm{~V} / \mathrm{cm}$	$1 \mu \mathrm{sec} / \mathrm{cm}-200 \mathrm{msec} / \mathrm{cm}$	120 B	\$475
Single-channel scope: identical X and Y amplifiers, each with 16 calibrated sensitivity ranges, differential input, 21 calibrated sweeps, plus magnifier to $\times 50$; phase shift between amplifiers $<1^{\circ}$ to 100 kHz ; beam finder.	dc-500 kHz	$200 \mu \mathrm{~V} / \mathrm{cm}-20 \mathrm{~V} / \mathrm{cm}$	$0.2 \mu \mathrm{sec} / \mathrm{cm}-5 \mathrm{sec} / \mathrm{cm}$	130C	\$695
Dual-channel scope: separate traces presented on chopped or alternate sweeps, single trace when desired; each channel has 4 calibrated sensitivity ranges, differential input; 15 calibrated sweeps, plus $\times 5$ magnifier.	dc-200 kHz	$10 \mathrm{mV} / \mathrm{cm}-10 \mathrm{~V} / \mathrm{cm}$	$1 \mu \mathrm{sec} / \mathrm{cm}-200 \mathrm{msec} / \mathrm{cm}$	122 A	\$695
Dual-beam scope: two completely independent beams for simultaneous display of Y vs. time and X vs. $Y ; 17$ calibrated sensitivity ranges, differential input; 21 calibrated sweeps, plus magnifier to $\times 50$; beam finder.	dc-500 kHz	$100 \mu \mathrm{~V} / \mathrm{cm}-20 \mathrm{~V} / \mathrm{cm}$	$0.5 \mu \mathrm{sec} / \mathrm{cm}-5 \mathrm{sec} / \mathrm{cm}$	132A	\$1275

Sampling Oscilloscope... bandwidths to 4 GHz

This versatile sampling scope permits microsecond, nanosecond and picosecond measurements. Ten calibrated sweep ranges $10 \mathrm{nsec} / \mathrm{cm}$ to $10 \mu \mathrm{sec} / \mathrm{cm}$ $\pm 5 \%$; X1 to X100 magnifier increases maximum sweep to $0.1 \mathrm{nsec} / \mathrm{cm}$. Delay control permits any portion of the unmagnified trace to be viewed when using a magnified sweep. Triggers to over 1000 MHz ; sensitivity, 15 mV in the sensitive position, 200 mV at 50 to 1000 MHz in the high-frequency position; 1.5 V sync output pulse for triggering external equipment

Has output for $x-y$ recorder, no-parallax internal graticule cathode-ray tube, beam finder. Three plug-ins for increased versatility. Price, 185B Sampling Oscilloscope, $\$ 2000$.

Sampling scope plug-ins	Rise time (bandwidth)	Sensitivity	Model	Price
Dual-channel 1000 MHz vertical amplifier, input through high-impedance probes (100 K Ω shunted by 2 pf); differential input; accessories included.	350 psec $(1 \mathrm{GHz})$	$1 \mathrm{mV} / \mathrm{cm}$ to $200 \mathrm{mV} / \mathrm{cm}$	187 C	$\$ 1250$

Sampling scope plug-ins	Rise time (bandwidth)	Sensitivity	Model	Price
Dual-channel 4 GHz vertical amplifier, feed-through sampler in $50-$ ohm line lets signals be monitored without terminating unless desired; differential input.	90 psec $(4 \mathrm{GHz})$	$1 \mathrm{mV} / \mathrm{cm}$ to $200 \mathrm{mV} / \mathrm{cm}$	188 A	$\$ 1500$
Switching time tester, includes 1 nsec rise time 20 V pulse generator, vertical amplifier, 2 bias supplies; circuit test boards for transistors, diodes, included.	0.5 nsec $(700 \mathrm{MHz})$	$4 \mathrm{mV} / \mathrm{cm}$ to $10 \mathrm{~V} / \mathrm{cm}$	186 A	$\$ 1700$

Sampling oscilloscope accessories	Features	Model	Price
Delay line enables signals to be viewed whenever suitable triggers are not available separately, by providing a delay between the trigger input and the vertical input of the scope.**	Input impedance 50 ohms, rise time approx. 0.25 nsec; includes delay line, sync takeoff and load.	$1100 \mathrm{~A}^{* *}$	$\$ 300$
Trigger countdown permits stable triggering to 10 GHz.	With $185 \mathrm{~B}, \mathrm{cw}$ signals as low as 5 mV can be displayed with <30 psec of jitter.	1103 A	$\$ 265$
Accessory kit for convenient probing when delay line is used with $187 \mathrm{~B} / \mathrm{C}$; also for $188 \mathrm{~A}, 186 \mathrm{~A}$.	Includes dividers, blocking capacitors.	1102 B	$\$ 190$

*Also see transistor test jig, page 7. **For 187 B ; for 187 C order 1100 A Option 01.

Militarized oscilloscope

Here is a plug-in oscilloscope militarized for rugged dependability under a wide range of environmental conditions: 170B, $\$ 2350$. Plug-ins available include
the following: 22 MHz dual-channel vertical amplifier, $20 \mathrm{mV} / \mathrm{cm}$ to $20 \mathrm{~V} / \mathrm{cm}, 162 \mathrm{C}, \$ 420$; horizontal sweep delay provides delays from $1 \mu \mathrm{sec}$ to 10 sec , mixed sweeps, $166 \mathrm{E}, \$ 435$; horizontal auxiliary allows normal or single sweeps, 166 F, $\$ 35$.

Oscilloscope cameras

197A Oscilloscope Camera

Instrument	Photographic characteristics	Model	Price
Scope camera with electronic shutter, all controls outside camera and color coded; interchangeable rotatable back; Polaroid ${ }^{(8)}$ Land Film Pack Back standard; 11 detented positions of back for multiple exposures; remote shutter input and external sync output provided.	Shutter speeds $1 / 30,1 / 15,1 / 8,1 / 4,1 / 2,1,2,4 \mathrm{sec}$. plus time and bulb; adjustable focus, $\mathrm{f} / 1.9$ lens standard, f/1.4 optional; object-to-image ratio adjustable $1: 1$ to 1:0.7; automatic ultraviolet light for optimum photo contrast.	197A	\$475*
Scope camera offering sharp definition and easy-to-use Polaroid Land Film Pack Back**; prefocused for convenient operation; detented moving lens for multiple exposures.	High resolution $f / 1.9$ lens, internal ultraviolet light; shutter speeds $1 / 100,1 / 50,1 / 25,1 / 10,1 / 5,1 / 2$, 1 sec , plus time and bulb.	196B	\$445
Scope camera with same features as 196B above, but without internal ultraviolet light.		196A	\$395

Testmobiles

Three Hewlett-Packard Testmobile models provide easy mobility for Hewlett-Packard oscilloscopes and other types of instrumentation. They incorporate stor-

Oscilloscope accessories

Hewlett-Packard offers a complete line of oscilloscope accessories, including probes, adapters, terminations,
age capability for plug-ins and accessories, and they offer conveniently adjustable viewing angle tor easy instrument viewing. The three models differ in their storage capacity and flexibility. Model 1115A, \$115; 1116A, \$85; 1117A, \$155.
cables, viewing hoods and service aids. These accessories are described in the Hewlett-Packard general catalog and on data sheets available from your HewlettPackard field engineer.

POWER SUPPLIES

A complete selection of ac input-dc output highly regulated power supplies is available from HewlettPackard. These supplies include more than 100 models, each ideal for a specific requirement. Specifications differ in output current and voltage, in load and line regulation and in ripple/noise characteristics, a standard of performance relative to the amount of ac that can be tolerated on the dc output. Output requirements, in these specific terms, plus economy,
should be considered in the selection of a power supply. Other characteristics to be considered are remote programming, remote sensing and possible requirements for constant current output or constant voltage output, or a need for automatic crossover between constant current and constant voltage.

Hewlett-Packard offers several basic selections of power supplies which are designated by the following three-letter classifications:

CCB Series	-constant current bench supplies
LAB Series	- general-purpose bench supplies, latest generation, adaptable to rack-mount use
STB Series	-high-stability bench supplies, high performance, easily rack mounted
MPB Series	-medium-power bench supplies, latest generation, adaptable to rack mounting
HVB Series	-high-voltage bench supplies
DPR Series	-dual-power rack supplies, 2 supplies in one "package"
LVR Series	-low-voltage rack mount supplies
MVR Series	-medium-voltage rack mount supplies
HVR Series	-high-voltage rack mount supplies
SCR-1 Series	-silicon-controlled rectifier supplies for efficient high-current delivery with high regulation
SCR-1P Seri	-compact versions of SCR supplies
SCR-3 Series	-SCR supplies with 3 kw output
SCR-10 Serie	-SCR supplies with 10 kw output
MOD Series	—modular plug-in regulated supplies

Special devices include high-speed programming supplies, power supply/power amplifier, integrated circuit supply, klystron supplies and others.

The following tables list the principal specifications of these supplies; complete data is available from your Hewlett-Packard field engineer.

CCB Series constant current bench supplies

Instrument	Output V	Output A	Load regulation	Line regulation	Ripple/noise	Model	Price
Supplies capable of pro- ducing very low DC currents with low ripple, high output impedance (10,000 Ω, and	$0-50$	$0-0.75$	$<0.0015 \%$	$<0.001 \%$	$<0.075 \mathrm{~mA} \mathrm{rms}$	6177 A	$\$ 425$
high common mode rejection. Constant current and remotely programmable. Meter for voltage or current monitoring.	$0-100$	$0-300$	$0-0.3$	$<0.0015 \%$	$<0.001 \%$	$<0.03 \mathrm{~mA} \mathrm{rms}$	6181 A

LAB Series general-purpose bench supplies

6205B, representative of the LAB Series, offers nine output combinations: $0-20 \mathrm{~V}$ at $0-600 \mathrm{~mA}$ or $0-40 \mathrm{~V}$ at $0-300 \mathrm{~mA}$. The 6205B consists of two independent supplies, and the 9 combinations are available by taking advantage of the Auto-Series and Auto-Parallel operation of the two. X10 meter sensitivity switch is also featured.

Instrument	Output v	Output A	Load regulation	Line regulation	Ripple/noise	Model	Price
Constant voltage/constant current; bench or $3^{1} 2^{11}$ half rack, Auto-Series, AutoParallel, adjustable voltage and current level; switchable range selection, X10 voltage and current meter switch.	$\begin{aligned} & 0-20 \\ & 0-40 \end{aligned}$	$\begin{aligned} & 0-1.5 \\ & 0-0.75 \end{aligned}$	0.01\% +4 mV	0.01\%+4 mV	$200{ }^{\text {V }}$ rms	6200B	\$189
	0-20	0-1.5	0.01\% +4 mV	0.01\% +4 mV	$200 \mu \mathrm{~V}$ rms	6201B	\$169
	0-40	0-0.75	$0.01 \%+4 \mathrm{mV}$	0.01\%+4 mV	$200 \mu \mathrm{~V}$ rms	6202B	\$169
	0-7.5	0-3	5 mV	3 mV	$200 \mu \mathrm{~V}$ rms	6203B	\$169
Bench mount or $31 / 2^{\prime \prime}$ rack; Auto-Series, Auto-Parallel, adjustable voltage and current limit; switchable range selection; X10 voltage and current meter switch. The 6205B has two separate outputs, each rated as shown. Model 6205B only, with Option 15 , has the X10 meter sensitivity deleted and is priced at $\$ 195$.	$\begin{aligned} & 0-20 \\ & 0-40 \end{aligned}$	$\begin{aligned} & 0-0.6 \\ & 0-0.3 \end{aligned}$	0.01\% +4 mV	0.01\%+4 mV	$200 \mu \mathrm{~V} \mathrm{rms}$	6204B	\$144
	$\begin{aligned} & 0-20 \\ & 0-40 \end{aligned}$	$\begin{aligned} & 0-600 \mathrm{~mA} \\ & 0-300 \mathrm{~mA} \end{aligned}$	0.01\% +4 mV	0.01\% + 4 mV	$200 \mu \mathrm{Vrms}$	6205B	\$235
	$\begin{aligned} & 0-30 \\ & 0-60 \end{aligned}$	$\begin{aligned} & 0-1 \\ & 0-0.5 \end{aligned}$	0.01\% + 4 mV	0.01\% + 4 mV	$200 \mu \mathrm{~V}$ rms	6206B	\$169
Except for output, same as 6202B, above.	0-160	0-0.2	0.02\% +2 mV	0.02\% +2 mV	$500 \mu \mathrm{Vrms}$	6207A	\$194
	0-320	0-0.1	0.02\% + 2 mV	0.02\%+2 mV	1 mV rms	6209A	\$194

Note: All above models offer remote programming

STB Series high-stability bench supplies*

6112A STB Supply

Instrument	Output V	Output A	Load regulation	Line regulation	Ripple/noise	Model	Price
Supplies with 0.01% stability, 6112A and 6116A with digital programmer*; allsilicon circuitry, remote programming.	0-40	0-500 mA	$0.001 \%+350 \mu \mathrm{~V}$	0.001\%	$40 \mu \mathrm{~V}$ rms	6102A	\$265
						6112A	\$375
	0-100	0-200 mA	0.001\% + 200 $\mu \mathrm{V}$	0.001\%	$40 \mu \mathrm{Vrms}$	6106A	\$265
						6116A	\$375
	0-3000	0-5 mA	$0.001 \%+100 \mu \mathrm{~V}$	0.001\%	0.5 mV rms	6110A	\$495

*Separate digital programmer, 6931A, \$129, available for use with $6102 \mathrm{~A}, 6106 \mathrm{~A}$

POWER SUPPLIES
continued

MPB Series medium-power bench supplies

Instrument	Output	Output A	Load regulation	Line regulation	.Ripple/noise	Model	Price
Highly regulated supplies offering constant voltage/ constant current operation with automatic crossover, all-silicon circuitry, remote programming and sensing, "crowbar" overload protection as an option; all are half-rack width, easily rack mounted; they differ in output and in height of cabinet. All feature a switch to select the mode of meter operation; as a voltmeter with X1 or X10 sensitivity, or an ammeter with X1 or X10 sensitivity.	0-7.5	0-5	5 mV	0.01\% + 2 mV	$200 \mu \mathrm{~V} \mathrm{rms}$	6281A	\$210
	0-10	0-10	$0.01 \%+5 \mathrm{mV}$	$0.01 \%+1 \mathrm{mV}$	$500 \mu \mathrm{~V}$ rms	6282A	\$350
	0-20	0-3	$0.01 \%+4 \mathrm{mV}$	$0.01 \%+2 \mathrm{mV}$	$200 \mu \mathrm{~V}$ rms	6284A	\$210
	0-20	0-5	$0.01 \%+5 \mathrm{mV}$	0.01\%+1 mV	$500 \mu \mathrm{Vrms}$	6285A	\$350
	0-20	0-10	$0.01 \%+5 \mathrm{mV}$	$0.01 \%+1 \mathrm{mV}$	$500 \mu \mathrm{Vrms}$	6286A	\$395
	0-40	0-1.5	$0.01 \%+2 \mathrm{mV}$	$0.01 \%+2 \mathrm{mV}$	$200{ }^{2} \mathrm{~V}$ rms	6289A	\$210
	0-40	0-3	$0.01 \%+4 \mathrm{mV}$	$0.01 \%+1 \mathrm{mV}$	$500 \mu \mathrm{~V} \mathrm{rms}$	6290A	\$350
	0-40	0-5	$0.01 \%+5 \mathrm{mV}$	$0.01 \%+1 \mathrm{mV}$	$500 \mu \mathrm{~V} \mathrm{rms}$	6291A	\$395
	0-60	0-1	$0.01 \%+2 \mathrm{mV}$	$0.01 \%+2 \mathrm{mV}$	$200{ }_{\mu} \mathrm{V} \mathrm{rms}$	6294A	\$210
	0-60	0-3	$0.01 \%+4 \mathrm{mV}$	$0.01 \%+1 \mathrm{mV}$	$500 \mu \mathrm{~V} \mathrm{rms}$	6296A	\$395
	0-100	0-750 ma	$0.01 \%+2 \mathrm{mV}$	$0.01 \%+2 \mathrm{mV}$	$200 \mu \mathrm{~V}$ rms	6299A	\$225

6515A Power Supply

HVB Series

high-voltage bench supplies

Instrument	Output V	Output A	Load regulation	Line regulation	Ripple/noise	Model	Price
Regulated dc supplies with all- silicon circuitry, 6515 A half rack, 6516 A half rack.	$0-1600$	$0-5 \mathrm{~mA}$	0.01% or $16 \mathrm{mV} \star$	0.01% or $16 \mathrm{mV}^{\star}$	2 mV rms	6515 A	$\$ 235$
	$0-3000$	$0-6 \mathrm{~mA}$	0.01% or $16 \mathrm{mV*}$	0.01% or $16 \mathrm{mV}^{\star}$	4 mV rms	6516 A	$\$ 295$

*Whichever is greater

DPR Series

dual-power rack supplies

Instrument	Output	$\underset{A}{\text { Output }}$	Load regulation	Line regulation	Ripple/noise	Model	Price
Two highly regulated supplies in one package, constant voltage/constant current, automatic crossover; allsilicon, remote programming, sensing; option "crowbar" over-voltage protection. Meter selector switch to monitor voltage with X1 or X10 sensitivity, or current with X 1 or X 10 sensitivity.	0-7.5	0-5	5 mV	$0.01 \%+2 \mathrm{mV}$	$200 \mu \mathrm{Vrms}$	6251A	\$445
	0-20	0-3	$0.01 \%+4 \mathrm{mV}$	$0.01 \%+2 \mathrm{mV}$	$200 \mu \mathrm{~V}$ rms	6253A	\$445
	0-40	0-1.5	$0.01 \%+2 \mathrm{mV}$	$0.01 \%+2 \mathrm{mV}$	$200 \mu \mathrm{~V}$ rms	6255A	\$445
	0-60	0-1	$0.01 \%+2 \mathrm{mV}$	$0.01 \%+2 \mathrm{mV}$	$200 \mu \mathrm{~V} \mathrm{rms}$	6257A	\$445
	0-100	0-750 mA	$0.01 \%+2 \mathrm{mV}$	0.01\% + 2 mv	$200 \mu \mathrm{~V}$ rms	6258A	\$445

LVR Series

low-voltage rack supplies

6269A Supply, typical of LVR Series

Instrument	Output	Output A	Load regulation	Line regulation	Ripple/noise	Model	Price
Lab versions (6200 Series) constant voltage/constant current with automatic crossover, meters, coarse and fine controls, silicon differential amplifier; systems versions (6300 Series) constant voltage/ current limiting, rear-panel voltage control, no meters; all models Auto-Series, Autoparallel; optional "crowbar" overload protection.	0-10	0-100	0.01\% + $200{ }_{\mu} \mathrm{V}$	0.01\% + $200 \mu \mathrm{~V}$	1 mV	6260A	\$775
	0-18	0-10	0.01\% + $200 \mu \mathrm{~V}$	0.01\% + $200 \mu \mathrm{~V}$	$500{ }_{\mu} \mathrm{V}$ rms	6263A	\$435
						6363A	\$359
	0-18	0-20	0.01\% + $200 \mu \mathrm{~V}$	0.01\% + $200{ }_{\mu} \mathrm{V}$	$500 \mu \mathrm{~V} \mathrm{rms}$	6264A	\$525
						6364A	\$450
	0-36	0-3	0.01\% +200 $\mu \mathrm{V}$	0.01\% $+200{ }_{\mu} \mathrm{V}$	$500 \mu \mathrm{~V} \mathrm{rms}$	6265A	\$350
						6365A	\$279
	0-36	0-5	0.01\% $+200 \mu \mathrm{~V}$	0.01\% $+200{ }_{\mu} \mathrm{V}$	$500 \mu \mathrm{Vrms}$	6266A	\$435
						6366A	\$359
	0-36	0-10	0.01\% $+200 \mu \mathrm{~V}$	0.01\% + $200 \mu \mathrm{~V}$	$500 \mu \mathrm{~V} \mathrm{rms}$	6267A	\$525
						6367A	\$450
	0-40	0-30	0.01\% +200 $\mu \mathrm{V}$	0.01\% + $200 \mu \mathrm{~V}$	1 mV rms	6268A	\$695
	0-40	0-50	$0.01 \%+200 \mu \mathrm{~V}$	0.01\% + $200 \mu \mathrm{~V}$	$500 \mu \mathrm{~V}$ rms	6269A	\$875
	0-60	0-3	0.01\% +200 $\mu \mathrm{V}$	0.01\% + $200{ }_{\mu} \mathrm{V}$	$500 \mu \mathrm{~V} \mathrm{rms}$	6271A	\$435
						6371A	\$359
	0-60	0-15	0.01\% + $200 \mu \mathrm{~V}$	0.01\% $\pm 200 \mu \mathrm{~V}$	$500 \mu \mathrm{~V}$ rms	6274A	\$695

MVR Series medium-voltage rack supplies

Instrument	Output V	Output A	Load regulation	Line regulation	Ripple/noise	Model
All semiconductor circuitry;	$0-320$	$0-600 \mathrm{~mA}$	0.007% or $0.01 \mathrm{~V}^{\star}$	0.007% or $0.01 \mathrm{~V} \star$	1 mV rms	890 A
voltage continuously variable; convection coling, fully protected against overloads.	$0-320$	$0-1.5$	0.007% or $0.01 \mathrm{~V}^{\star}$	0.007% or $0.01 \mathrm{~V} \star$	1 mV rms	895 A

HVR Series high-voltage rack supplies

Instrument	Output V	Output A	Load regulation	Line regulation	Ripple/noise	Model	Price
Constant voltage/constant current with automatic crossover; all solid-state circuitry; 3-decade switching with vernier control, short circuit proof.	0-1000	0-200 mA	0.005\% or $20 \mathrm{mV}^{\star}$	0.005\% or 20 mV *	1 mV rms	6521A	\$750
	0-2000	$0-100 \mathrm{~mA}$	0.005\% or 20 mV *	0.005\% or 20 mV *	1 mV rms	6522A	\$750
	0-4000	0-50 mA	0.005\% or $20 \mathrm{mV}^{\star}$	0.005\% or $20 \mathrm{mV}^{\star}$	1 mV rms	6525A	\$750

*Whichever is greater

SCR-1 Series SCR regulated supplies

Instrument	Output V	Output A	Combined line and load regulation	Ripple/noise	Model	Price
Silicon-controlled rectifier supplies for high efficiency; constant voltage/constant current; remote program- ming, remote sensing.	$0-72$	$0-5$	0.5%	$1 \% \mathrm{rms}$	505 A	$\$ 435$
	$0-36$	$0-10$	$0-25$	0.5%	$1 \% \mathrm{rms}$	510 A

POWER SUPPLIES
continued

SCR-1P Series compact SCR supplies

Instrument	$\underset{\mathbf{V}}{\text { Output }}$	Output A	Load regulation	Line regulation	Ripple/noise	Model	Price
Compact versions of the SCR supplies described above; $3^{1 / 2} 2^{\prime \prime}$ or $5^{1 / 4^{\prime \prime}}$ high, $19^{\prime \prime}$ wide; constant voltage/ constant current, automatic crossover.	0-20	0-15	20 mV	10 mV	40 mV	6427B	\$380
	0-20	0-45	36 mV	20 mV	40 mV	6428B	\$550
	0-36	0-10	36 mV	18 mV	36 mv	6433B	\$370
	0-60	0-5	60 mV	30 mV	120 mV	6438B	\$360
	0-60	0-15	120 mV	60 mV	60 mV	6439B	\$550
	0-120	0-2.5	120 mV	60 mV	240 mV	6443B	\$360
	1-600	0-1.5	1.2 V	600 mV	1.2 V	6448B	\$550

SCR-3 Series SCR supplies with 3 kw output

Instrument	Output V	Output A	Combined line and load regulation	Ripple/noise	Model	Price
Constant voltage/constant current supplies with automatic crossover; remote sensing. 3-phase, 460 V input. Also available 208 or 230 V input at $\$ 40$ less.	$0-8$	$0-300$	$0-15$	$0-36$	25 mV	1%
	$0-200$	$0-100$	$0.2 \%+10 \mathrm{mV}$	1%	6450 A	$\$ 1590$
	$0-64$	$0-50$	$0.2 \%+10 \mathrm{mV}$	0.5%	6456 B	$\$ 1490$

SCR-10 Series SCR

supplies with 10 kw output

6469A Power Supply

Instrument	Output v	Output A	Combined line and load regulation	Ripple/noise	Model	Price
Constant voltage/constant current, automatic crossover; all-silicon circuitry, moderate regulation, remote programming and sensing; short circuit proof, Auto-Series, Auto-Parallel operation. Cabinet construction with casters. Also available for rack mounting for $\$ 85$ less.	0-4	0-2000	50 mV	7\%	6463A	\$3585
	0-8	0-1000	25 mV	1\%	6464A	\$3385
	$\begin{aligned} & 0-16 \text { or } \\ & 0-18 \end{aligned}$	$\begin{aligned} & 0-600 \text { or } \\ & 0-500 \end{aligned}$	$0.2 \%+10 \mathrm{mV}$	1\%	6466A	\$3185
	0-36	0-300	$0.2 \%+10 \mathrm{mV}$	0.5\%	6469A	\$2985
	0-64	0-150	$0.2 \%+10 \mathrm{mV}$	0.25\%	6472A	\$2985
	0-110	0-100	$0.2 \%+10 \mathrm{mV}$	0.2\%	6475A	\$2985
	0-220	0-50	$0.2 \%+10 \mathrm{mV}$	0.15\%	6477A	\$2985
	0-300	0-35	$0.2 \%+10 \mathrm{mV}$	0.1\%	6479A	\$2985
	0-500	0-20	$0.2 \%+10 \mathrm{mV}$	0.1\%	6483A	\$2985

MOD Series plug-in modular regulated supplies

Instrument	Output V	Output A	Load regulation	Line regulation	Ripple/noise	Model	Price
All input, output connectors via 11-pin plug; other pins to permit remote program-f ming of output control; Auto-Series, Auto-Parallel, remote sensing; plug directly into any chassis with 11-pin socket (two 8-pin sockets for the 6358A); efficient grouping of like or mixed rack mount supplies.	0-18	$0-300 \mathrm{~mA}$	3 mV or $0.03 \%{ }^{*}$	3 mV or $0.03 \% *$	1 mV rms	6343 A	\$120
	0-18	0-1	3 mV or 0.03\%*	3 mV or 0.03% *	1 mV rms	6344 A	\$165
	0-18	0-2.5	3 mV or $0.03 \% *$	3 mV or 0.03% *	1 mV rms	6345A	\$225
	0-36	0-150 mA	3 mV or $0.02 \% *$	3 mV or $0.02 \%^{*}$	1 mV rms	6346 A	\$120
	0-36	$0-500 \mathrm{~mA}$	3 mV or 0.02\%*	3 mV or $0.02 \%^{*}$	1 mV rms	6347 A	\$165
	0-36	$0-1.5$	3 mV or 0.02\%*	3 mV or $0.02 \%^{*}$	1 mV rms	6348A	\$225
	0-160	0-400 mA	0.005\% +2 mV	$0.005 \%+1 \mathrm{mV}$	1 mV rms	6354A**	\$259
	0-320	0-200 mA	$0.005 \%+2 \mathrm{mV}$	$0.005 \%+1 \mathrm{mV}$	1 mV rms	6357A**	\$259
	0-600	0-200 mA	$0.01 \%+5 \mathrm{mv}$	$0.01 \%+5 \mathrm{mV}$	1 mV rms	6358A**	\$450

*Whichever is greater
**All-silicon supplies

High-speed programming supplies

Instrument	Output V	Output A	Load regulation	Line regulation	Ripple/noise	Model
High-speed programming by resistance, voltage or current; constant voltage/ constant current with automatic crossover.	$0-18$	$0-40$	$0-0.5$	$0.01 \%+2 \mathrm{mV}$	$0.01 \%+2 \mathrm{mV}$	$200 \mu \mathrm{Vrms}$
			$0.01 \%+2 \mathrm{mV}$	$0.01 \%+2 \mathrm{mV}$	$200 \mu \mathrm{Vrms}$	865 C

High-speed programming power supply/amplifier

Continuously variable supply providing an output -20 to $+20 \mathrm{~V}, 0$ to 0.5 amp ; load regulation $0.02 \%+5$ mV , line regulation the same, ripple and noise 2 mV rms; two fixed auxiliary outputs -20 V at 0.100 mA ,
+20 V at 0 to 100 mA ; use this supply as a directcoupled power amplifier, 40 V p-p maximum output at 0 to 0.5 amp , variable voltage gain 0 to 10 . Model 6823A, \$194.

Micromodular power supplies

Power supplies designed specifically for integrated circuit applications. Featured is a totally independent overvoltage circuit (in addition to the normal series regulator) which shorts the output within 10 microseconds if the preset voltage threshold is exceeded.

Short circuit protection also provided. Output voltages adjustable 2 to 4.5 V and 4.5 to 7.5 V . Current capacities of $8,15,30,60$ and 120 amperes. Half and full rack width models available. Model 6380 Series. Prices start at \$205.

Klystron power supplies

Two types of supplies, one powers more than 250 models of reflex klystrons, with $0-800 \mathrm{~V}$ reflector supply, $250-800 \mathrm{~V}$ beam supply negative to chassis ground, 6.3 V adjustable filament supply; continuous directreading controls for accurate voltage setting, high reg. ulation, internal and/or external modulation. Relays
disconnect the beam and filament supplies to protect klystrons, should the filament voltage exceed specified limits. Model 716B, $\$ 875$. The other supply is designed for low-power applications, delivers 250-400 V at 30.50 mA beam supply, 0.900 V reflector supply, 6.3 V filament supply. Model $715 \mathrm{~A}, \$ 365$.

POWER SUPPLIES
continued

Special-use, versatile supplies

Instrument	Output V	$\mathrm{O}_{\mathrm{A}}^{\text {Output }}$	Load regulation	Line regulation	Ripple/noise	Model	Price
Versatile supplies, AutoSeries, Auto-Parallel, programmable, remote sensing, bench or $1 / 3$ rack.	0-18	0-3	0.03\% or 2 mV *	0.02\% or $1 \mathrm{mV}{ }^{*}$	$500 \mu \mathrm{Vrms}$	6224A	\$340
	0-36	0-1.5	0.02\% or 2 mV *	0.02\% or 2 mv *	$500 \mu \mathrm{~V} \mathrm{rms}$	6226A	\$325
Strain gage power module, all semiconductor.	0-25	0-0.2	2 mV	2 mv	$100 \mu \mathrm{~V}$ rms	801 C	\$149
Solid-state, compact, protected supply for transistor work, metered output.	0-30	150 mA	0.3% or $30 \mathrm{mv*}$	0.3\% or $\pm 15 \mathrm{mV} *$	$150 \mu \mathrm{Vrms}$	721A	\$145
Dual-range convertible for rack or bench; Auto-Series, Auto-Parallel; range selected by plug-in card.	$\begin{aligned} & 0-32 \\ & 0-64 \end{aligned}$	$\begin{aligned} & 0-2 \\ & 0-1 \end{aligned}$	0.02\% or 3 mV *	0.03\% or 5 mV *	$200 \mu \mathrm{~V} \mathrm{rms}$	6242A	\$435
Versatile supply for bench or systems, compact, programmable, $1 / 3$ rack, metered output.	0-40	500 mA	20 mV	10 mV	$150 \mu \mathrm{Vrms}$	723A	\$240
Versatile 100 V supply, AutoSeries, Auto-Parallel, plug-in cards.	0-100	0-1	0.02\% or $0.005 \mathrm{~V} *$	0.02\% or $0.005 \mathrm{~V}^{*}$	$200 \mu \mathrm{~V}$ rms	881A	\$475
Special, no switching 500 V supplies; metered output, voltage and current.	$\begin{aligned} & 0-500 \\ & 12.6 \mathrm{rms} \end{aligned}$	$\begin{aligned} & 100 \mathrm{~mA} \\ & 3 \end{aligned}$	0.5\% or $1 \mathrm{~V}^{\star}$	0.5% or 1 V *	$<1 \mathrm{mV}$	711A	\$275
	$\begin{aligned} & 0-500 \\ & -300 \\ & 6.3 \mathrm{rms} \end{aligned}$	$\begin{aligned} & 200 \mathrm{~mA} \\ & 50 \mathrm{~mA} \\ & 10 \end{aligned}$	$<50 \mathrm{mV}$	$<100 \mathrm{mV}$	<500 $\mu \mathrm{V}$	712B	\$490

*Whichever is greater

Data amplifiers

2470A Data Amplifier

Instrument	Frequency resp.	Gain	Noise (max)	Output	Model	Price
Guarded data amplifier, 134 db CMR, for use with 2401C DVM (page 3).		$+1,+10$.005 mV $(2401 \mathrm{C} 10 \mathrm{mV}$ range)	10.5 V	2411 A	$\$ 1200$
Differential data amplifier (with internal power supply).	dc-50 kHz	$10,30,100$, 300,1000	$5 \mu \mathrm{Vrms} \mathrm{rti}$	$\pm 10 \mathrm{~V}$	2470 A	$\$ 585$
Differential data amplifier (with internal power supply).	dc- 75 kHz	$1-1000$	$5 \mu \mathrm{Vrms} \mathrm{rti}$	$\pm 10 \mathrm{~V}$	8875 A	$\$ 495$
Narrowband differential amplifier	dc- 100 Hz	1000	$3 \mu \mathrm{Vp}-\mathrm{p}$	$\pm 5 \mathrm{~V}$	$860-4300$	$\$ 425$

Solid-state operational amplifier

Instrument		Frequency response	Gain	Output	Model	Price
Operational amplifier, uses one of four plug-ins below to suit it for specific applications; $<4 \mu \mathrm{~V}$ p-p noise.		depends on plug-in	5×10^{7} at dc (open loop)	$10 \mathrm{~V}, 10 \mathrm{~mA}$	2460A	\$445
sul-6nld $\forall 09$ ฤZ	Data systems unit	$350 \mathrm{~Hz}-25 \mathrm{kHz}$	$\begin{aligned} & 10,30,100 \text {, } \\ & 300,1000 ; \\ & \text { inverting } \end{aligned}$		2461A-M1	\$ 85
	Bench-use unit	350 Hz .50 kHz	$\begin{aligned} & 1,10,100 \\ & 1000 \text {; inverting } \end{aligned}$		2461A-M2	\$125
	Plus-one gain unit		X1, non-inverting		2461A-M4	\$ 35
	Patch unit	Brings input, output, summing point, feedback circuits to front panel for operational functions			2461A-M3	\$ 75

Fast pulse amplifiers

Rise time	Input z	Gain	Noise (max)	Output	Model	Price
3 nsec	200Ω	20 db into 200Ω	$<10 \mathrm{db}$	$+3.2 \mathrm{~V},-8 \mathrm{~V}$ into 300Ω	460 AR	$\$ 225$
3 nsec	200Ω	15 db into 200Ω	$<6 \mathrm{db}$	$+8 \mathrm{~V},-60 \mathrm{~V}$ into 200Ω	460 BR	$\$ 275$
$<4 \mathrm{nsec}$	50Ω	$40,20 \mathrm{db}$	$40 \mu \mathrm{~V}$ at 40 db	$1 \mathrm{Vp-p} \mathrm{into} 50 \Omega$	462 A	$\$ 325$

General-purpose amplifiers

Frequency response	Input Z	Gain	Noise (max)	Output (max)	Model	Price
$5 \mathrm{~Hz}-2 \mathrm{MHz}(\pm 1 \mathrm{db})$	$1 \mathrm{M} \Omega / 15 \mathrm{pf}$	$40,20 \mathrm{db}$	$40{ }^{\prime} \mathrm{V}$ at 40 db	10 V into 3000Ω	450A	\$165
$1 \mathrm{kHz}-150 \mathrm{MHz}(\pm 1 \mathrm{db})$	50Ω	$40,20 \mathrm{db}$	$<40 \mu \mathrm{~V}$ at 40 db	0.5 V rms into 50Ω	461A	\$325
$\begin{aligned} & 100 \mathrm{~Hz}-50 \mathrm{kHz}(\pm 0.1 \mathrm{db}) \\ & <2 \mathrm{db} \text { down at } 5 \mathrm{~Hz} \text { and } \\ & 1 \mathrm{MHz} \end{aligned}$	$10 \mathrm{Ms} /<20 \mathrm{pf}$	$40,20 \mathrm{db}$	$<25 \mu \mathrm{~V}$ referred to input	$<5 \mathrm{~V}$ rms into 50Ω	465A	\$190
$10 \mathrm{~Hz}-1 \mathrm{MHz}(\pm 0.5 \mathrm{db})$	$1 \mathrm{M} \Omega / 25 \mathrm{pf}$	$40,20 \mathrm{db}$	$75 \mu \mathrm{Vrms}$	1.5 V rms into 1500Ω	466A (battery operated)	\$165

Power and voltage amplifiers

463A Precision Amplifier

Instrument	Frequency response	Gain	Output	Model	Price
Precision amplifier, both voltage and power, ultra low distortion, input Z $1 \mathrm{M} \Omega /<20 \mathrm{pf}$, noise $200 \mu \mathrm{~V}$ referred to input (depending on range).	$\begin{aligned} & \mathrm{dc}-100 \mathrm{kHz}, \\ & (\pm 0.01 \%) \\ & \text { usable to } 1 \mathrm{MHz} \end{aligned}$	X10, X100, X1000; continuously adjustable 0-1000	100 V rms to 50 ma into $2 \mathrm{k} \Omega$	463A	\$590
Power amplifier is also $\pm 1 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$ $1 / 2$ amp power supply, input Z $50 \mathrm{k} \Omega / 100 \mathrm{pf}$, noise $<5 \mathrm{mV}$ p-p.	dc-1 MHz ($\pm 1 \%$)	X1, X2, x5, X10	20 V peak0.5 A peak	467A	\$575
Tunable power amplifier, source of high-level rf power when used with signal generators.	$10-500 \mathrm{MHz}$	$30,27,24 \mathrm{db}$, depending on frequency	$\begin{aligned} & 0-15 \mathrm{~V} \text { into } \\ & 50 \Omega \end{aligned}$	230A	\$1200
Microwave power amplifiers; TWT devices; amplitude modulation capability with internal $20 \mathrm{db}, 500 \mathrm{kHz}$ modulation amplifier.	$1-2 \mathrm{GHz}$	30 db	1 W	489A	\$2250
	$2-4 \mathrm{GHz}$	30 db	1 W	491C	\$2250
	$4-8 \mathrm{GHz}$	30 db	1 W	493A	\$2600
	$7-12.4 \mathrm{GHz}$	30 db	1 W	495A	\$2600

Also see Model 6823A Power Supply/Amplifier, page 19.

FREQUENCY, TIME STANDARDS

Cesium beam frequency standard

Atomic frequency standard with an accuracy of $2 / 10^{11}$ designed for primary standard applications; solidstate control circuitry, compact design. Only $83 / 4$ " high, 65 lbs . Utilizes cesium 133, with cesium beam tube resonator stabilizing the output of a high-quality quartz oscillator in a closed loop, continuously monitoring circuit. Outputs $5 \mathrm{MHz}, 1 \mathrm{MHz}, 100 \mathrm{kHz}$ sinusoidal, 100 kHz clock drive. Price, $\$ 15,500$.

5060A Cesium Beam Standard

Quartz oscillators

Instrument	Frequency output	Voltage output	Power requirements	Model	Price
Vacuum-tube 1 MHz oscillator, $5 / 10^{8} /$ week stability; timing comb provides pips at $100,1000,10,000$ $\mu \mathrm{sec}$. intervals, scope for frequency comparison, compact.	Sine: $1 \mathrm{MHz}, 100 \mathrm{kHz}$, $10 \mathrm{kHz}, 1 \mathrm{kHz}, 100$ $\mathrm{Hz}, 10 \mathrm{~Hz}$; pulse: $10 \mathrm{kHz}, 1 \mathrm{kHz}, 100$ $\mathrm{Hz}, 10 \mathrm{~Hz}$	Sine: 5 rms ; pulse: 15 V p-p	115 or $230 \mathrm{~V}, 50-$ $1000 \mathrm{~Hz}, 140 \mathrm{~W}$ max.		\$1100
Solid-state 1 MHz oscillator, 5/108/week stability; capable of supplying several instruments simultaneously, useful for driving up to 20 5275A Time Internal Counters (page 25); low cost.	$1 \mathrm{MHz}, 100 \mathrm{kHz}$ sine	$1 \mathrm{Vrms}, 50 \Omega$	115 or 230 V , $50-1000 \mathrm{~Hz}, 2-$ 15 W , dep. on oven cycle	101A	\$ 600
Solid-state 2.5 MHz oscillator, $5 / 10^{11} /$ day long-term stability, 1.5/10 ${ }^{11}$ short-term stability; buffered outputs for stability; high spectral purity; high reliability.	$5 \mathrm{MHz}, 1 \mathrm{MHz}, 100$ kHz sine; 100 kHz clock drive	1 V rms, 50Ω sine; 0.5 V , 1000Ω clock drive	$\begin{gathered} 22-30 \mathrm{~V} \text { dc, } \\ \text { external } \end{gathered}$	106A	\$3450
			$\begin{aligned} & 115 \text { or } 230 \mathrm{~V} \text {, } \\ & 50-1000 \mathrm{~Hz} \text {; } \\ & \text { contains internal } \\ & 222-30 \mathrm{~V} \text { dc } \\ & \text { standby battery } \end{aligned}$	106B	\$3900
Solid-state militarized 5 MHz oscillator, $>5 / 10^{10} /$ day long-term stability, $1.5 / 10^{11}$ short-term stability; extreme spectral purity for microwave spectroscopy; compact ($5^{1 / 4^{\prime \prime}}$ high), shock and vibration resistant, watertight.	$5 \mathrm{MHz}, 1 \mathrm{MHz}, 100$ kHz sine; 100 kHz clock drive	$\begin{aligned} & 1 \mathrm{Vrms}, 50 \Omega \\ & \text { sine, clock } \\ & \text { drive } \end{aligned}$	$\begin{aligned} & 22-30 \mathrm{~V} \text { dc, } \\ & \text { external } \end{aligned}$	107AR	\$2400
			$\begin{aligned} & 115 \text { or } 230 \mathrm{~V} \text {, } \\ & 50-1000 \mathrm{~Hz} \text {; } \\ & \text { contains internal } \\ & 22-30 \mathrm{~V} \mathrm{dc} \\ & \text { standby battery } \end{aligned}$	107BR	\$2750

Frequency divider and clock

For time standard use: Capable of deriving a low clock frequency from the output of an ultrastable frequency source (typically, a precision quartz oscillator) without degrading its accuracy. Calibrated time reference makes possible precise comparisons against broadcasts from standards stations such as WWV, WWVH, NBA, MSF, JJY, etc., to maintain time or to measure drift rate, frequency offset (see Hewlett-Packard Application Note 52). Accepts inputs from Hewlett-Packard
precision quartz oscillators and the 5060A Cesium Beam Standard. (A Model 115BR served in the famous "flying clock"-See Hewlett-Packard Journal, Vol. 16, No. 8, April 1965.) Features time comparison to ± 10 $\mu \mathrm{sec}, 0.1 \mathrm{sec}$ visually, 0.01 sec with stroboscopic technique. 115BR, ruggedized for mobile use, with auxiliary outputs of 100,10 , and $1 \mathrm{kHz}, \$ 2750$. Model 115 CR , for lab applications not requiring auxiliary outputs, $\$ 1500$.

VLF comparator

Compares received 60 kHz signal (National Bureau of Standards station WWVB, referred to U.S. Frequency Standard) and user's frequency standard (100 kHz output); comparison accuracy to 1×10^{-8} possible in 8 hours. Receives signal, plots strip-chart record of
phase difference which can be interpreted to measure frequency offset, drift rate of user's local standard; no other instruments required. Includes antenna with preamplifiers (for up to 1000 -foot cable) and 100 -foot cable. Model 117A, \$1300.

Standby power supplies

Instrument	Voltage output	Max. current	Standby capacity	Model	Price
Economical standby supply protects frequency/time standards against power failures; takes over when external power fails; automatic operation, no switching.	$24+1-2 \mathrm{Vdc}$	500 mA	2 amp-hour battery	725AR	\$ 645
			25 amp-hour battery	724BR	\$ 950
Standby power supply for atomic frequency standard (5060A Cesium Beam Standard, page 22); provides protection in case of external power failure.	$24 \mathrm{~V} \pm 2 \mathrm{~V}$ dc	2 A (2.5 A for 30 min .)	21 amp-hour battery	5085A	\$1250

Frequency synthesizers

Three precision frequency synthesizers are available from Hewlett-Packard as highly accurate sources with fast, convenient manual (pushbutton) or remote
switching; small increment switching over wide frequency ranges; extremely high spectral purity. Refer to Signal Sources, page 27.

Solid-state p/uy-in counter

Measure 0.50 MHz directly, up to 500 and 3000 MHz with plug-in converters, and up to 18 GHz with other accessories; more measurements with greater accuracy than any other counter available. Measures frequency, period, multiple period average, ratio, multiple ratio and time interval. Also scales by decade factors to 10^{9}. Sensitivity 100 mV , time base stability better than $3 / 10^{9} /$ day; 8 -digit in-line display, $B C D$

5245L Counter with 5255A 3-12.4 GHz Plug-in output; optional remotely programmable time base and function controls. 5245L (without plug-ins), \$2950. (See page 46 for printers, D-to-A converters.)

Plug-ins for 5245L Solid-state Counter	Model	Price
Converter plug-in increases counter range to 100 MHz , retains accuracy, stability of counter.	5251 A	\$300
Prescaler plug-in increases basic counting rate to 350 MHz , no tuning, multiple scaling factors.	5252 A	\$685
Converter plug-in increases counter range to 500 MHz .	5253B	\$500
Converter plug-in increases counter range to $300-3000 \mathrm{MHz}$.	5254 A	\$825
Converter plug-in increases counter range to $3-12.4 \mathrm{GHz}$.	5255 A	\$1650
Video amplifier plug-in increases sensitivity to $1 \mathrm{mV} \mathrm{rms}, 10 \mathrm{~Hz}-50 \mathrm{MHz}$; input impedance $1 \mathrm{M} \Omega, 15 \mathrm{pf}$.	5261 A	\$325
Time interval plug-in for measurements with $0.1 \mu \mathrm{sec}$ resolution; direct measurements $1 \mu \mathrm{sec}$ to $10^{8} \mathrm{sec}$.	5262 A	\$300
Preset unit plug-in for normalized measurements read directly in engineering units (measure $N \times$ frequency, $N \times$ period, $N \times$ ratio; count N events; divide input frequency by N; $N=1-100,000$).	5264 A	\$650
Digital voltmeter plug-in for measuring dc voltage $10-1000 \mathrm{~V}$ f.s., 5% overrange capability.	5265A	\$575

FREQUENCY MEASUREMENT

continued

Solid-state general-purpose counters

Standard features of Hewlett-Packard solid-state counters include display storage (continuous display of most recent measurements until the count actually changes), 100 mV sensitivity, higher sampling rates (time between counts independent of gate time), -20° to $+65^{\circ}$ operating temperature, BCD output (on most models) for recorder and systems (see page 46 for printers, D-to-A converters), multiple period average techniques for highest accuracy, modular construction for rack and bench use in a single instrument.

| Instrument | Frequency
 range | Measures |
| :--- | :--- | :--- | :--- | :--- | :--- | :---: |

*Measurement code: F-Frequency, P-Period, MP—Multiple Period, MPA-Multiple Period Average, TI-Time Interval, R-Ratio, MR-Multiple Ratio.
**Price in U.S., f.o.b. Palo Alto, California. For price in other countries, contact local hp field office.

Reversible plug-in counter

Plug-in reversible counter which counts at a 2 MHz rate, reverse counts at a 1 MHz rate. Useful for totalizing individual frequencies; count sum or difference of 2 input signals; totalize 1 signal with the direction of the count as a function of the polarity or the 90° phase lag or lead of a second signal. Price of counter, Model 5280A, \$1450; price of universal input plug-in

5280A Reversible Counter with 5285A Plug-in for basic operation, 5285A, $\$ 450$. Other plug-ins for increasing versatility to come.

Vacuum-tube plug-in counters

Economy and versatility are combined in these HewlettPackard plug-in electronic counters, which measure frequency, time interval, period, ratio. Stability is $3 / 10^{8}$ short term, $5 / 10^{8} /$ week long term. Recorder
output is optional. Basic counters measure 10 Hz to 10.1 MHz . The two basic counters differ in readout: the 524C offering 8 digits, in-line, $\$ 2900$; the 524D, 8 digits columnar, \$2650.

Plug-ins for 524C, 524D vacuum-tube counters	Model	Price
Frequency converter, extends counter frequency 10 MHz to 100 MHz ; video amplification $10 \mathrm{~Hz}-$ 10.1 MHz.	525 A	$\$ 350$
Frequency converter, extends counter frequency 100 MHz to 220 MHz.	525 B	$\$ 425$
Frequency converter, extends counter frequency 100 to 510 MHz ; video amplification, $50 \mathrm{kHz}-10.1 \mathrm{MHz}$.	525 C	$\$ 475$
Video amplifier unit, increases counter sensitivity from 1 V to $10 \mathrm{mV} \mathrm{rms}, 10 \mathrm{~Hz}-10 \mathrm{MHz}$.	526 A	$\$ 250$
Time interval unit, converts counter to time-measuring device with $0.1 \mu \mathrm{sec}$. resolution, $1 \mu \mathrm{sec} .-10^{7}$ sec.	526 B	$\$ 275$
Period multiplier unit, increases period measurement accuracy of counter, 0-100 kHz, up to 10^{4} periods.	526 C	$\$ 250$
Phase unit, for phase angle measurements with accuracy up to $\pm 0.1^{\circ}$; range: $0-360^{\circ}$ lead or lag, 1 Hz to 20 kHz . Direct readout in degrees $396-404 \mathrm{~Hz}$.	526 D	$\$ 850$

Vacuum-tube general-purpose counters

Instrument	Frequency range	Measures	Readout	Time base (gate times)	Model	Price
Low-cost utility counters for a wide variety of measurements; easily read, easy to use; measure frequency, rpm, time, random events, totalize elapsed time. Recorder output is optional. Input sensitivity 200 mV (100 mV on $523 \mathrm{C} / \mathrm{D}$).	$\begin{aligned} & 1 \mathrm{~Hz} \text { to } \\ & 120 \mathrm{kHz}^{\star} \end{aligned}$	Frequency	4 digits columnar	$\begin{aligned} & \text { Power line }{ }^{\star \star} \\ & (0.1,1 \mathrm{sec}) \end{aligned}$	521A	\$650
	$\begin{aligned} & 1 \mathrm{~Hz} \text { to } \\ & 120 \mathrm{kHz}^{\star} \end{aligned}$	Frequency	5 digits columnar	0.01% crystal (0.1-10 sec)	521C	\$800
	$\begin{aligned} & 1 \mathrm{~Hz} \text { to } \\ & 120 \mathrm{kHz} \end{aligned}$	Frequency	4 digits in-line	$\begin{aligned} & \text { Power line }{ }^{\star \star} \\ & (0.1,1 \mathrm{sec}) \end{aligned}$	521D	\$900
For rack mount style, add suffix " R " to model number.	$\begin{aligned} & 1 \mathrm{~Hz} \text { to } \\ & 120 \mathrm{kHz}^{\star} \end{aligned}$	Frequency	5 digits in-line	0.01% crystal (0.1-10 sec)	521 E	\$1125
	$\begin{aligned} & 1 \mathrm{~Hz} \text { to } \\ & 120 \mathrm{kHz}^{\star} \end{aligned}$	Frequency, time interval, period	5 digits columnar	$\begin{aligned} & 1 / 10^{5} / \text { week } \\ & \text { crystal } \\ & (0.001-10 \mathrm{sec}) \end{aligned}$	522B	\$1100
	$\begin{aligned} & 1 \mathrm{~Hz} \text { to } \\ & 1.2 \mathrm{MHz} \end{aligned}$	Frequency, elapsed time	5 digits columnar	$\begin{aligned} & \text { Power line** } \\ & (0.1,1 \mathrm{sec}) \end{aligned}$	521G	\$750
	$\begin{aligned} & 1 \mathrm{~Hz} \text { to } \\ & 1.2 \mathrm{MHz} \end{aligned}$	Frequency, period, time interval, phase delay, ratios	5 digits in-line	$\begin{aligned} & 2 / 10^{6} / \text { week } \\ & \text { crystal } \\ & (0.001-10 \mathrm{sec}) \end{aligned}$	523 C	\$1950
			5 digits columnar		523D	\$1700

Preset counter

This Hewlett-Packard counter measures normalized rates, ratio, normalized ratio and time for N events to occur. It is ideal for direct reading rpm, psi, gpm and similar engineering units. N may be preset to any integer between 1 and 100,000. Remote programming of
number N , with separate outputs available to operate external equipment. Basic range is $2 \mathrm{~Hz} \cdot 300 \mathrm{kHz}$ (2 $\mathrm{Hz}-100 \mathrm{kHz}$ for preset Input A, time Input A, ratio Input B), BCD output. Model 5214L, $\$ 1475$.

Time interval counter

This counter permits measurement of time interval with 10 nanosecond resolution. 10 nanosecond to 0.1 second range; counted frequency 100 MHz from external 1 MHz standard. Ideal for precise digital
measurement of short time intervals between events; solid-state, BCD output. Seven-digit registration in neon columns, reads in microseconds with decimal point. Model 5275A, \$2500.

FREOUENCY MEASUREMENT

continued

Frequency-extending counter accessories

Instrument	Model	Price
Automatic frequency divider for direct readout of freq., 0.3-12.4 GHz on 5245L Counter. No ambiguity, offset or arithmetic processing.	5260 A	$\$ 3250$
Frequency converter using phase-lock technique to increase frequency range of 5245L Counter (with 5253B Plug-in) to 15 GHz (18 GHz optional), with full counter accuracy. Observe jitter, FM, AM (on scope); measure carrier frequency of pulsed signals.	2590 B	$\$ 1900$
Transfer oscillator extends frequency range of 5245 L Counter to 12.4 GHz for all types of frequency; measure frequency of FM signals, determine FM deviation, measure frequency of pulsed signals.	540 B	$\$ 1050$
Harmonic mixer, with 540B Transfer Oscillator, extends counter measurement to 18 GHz, fixed-tuned to eliminate adjustments.	P932A	$\$ 250$

Frequency and tachometer indicators

Instrument	Model	Price
Frequency meter directly measures frequency or rep rate of signals (0.2 V rms sine-wave sensitivity, 1 V min. positive pulses) $3 \mathrm{~Hz}-100 \mathrm{kHz}$; expanded scale feature for increased resolution.	500 B	$\$ 335^{*}$
Tachometer indicator, calibrated directly in rpm, otherwise identical to 500B; $15-6,000,000 \mathrm{rpm}$.	500 C	$\$ 345^{*}$
Optical tachometer, useful with electronic counters, tachometer indicators, to measure rps, rpm with no mechanical connection; no moving parts, uses light reflection technique; 1 rps-300,000 rpm.	506 A	$\$ 195$
Compact, low-torque tachometer generators for use with counters, provide shaft speed measurements accurate within ± 1 rpm; direct indications in rpm, rps; A, B, C, D models differ in measurement range, (15-40,000 rpm) and output ($60-360$ cycles/revolution).	508	$\$ 125$

*Rack mount, add suffix " R " to model number

Coaxial and waveguide frequency meters

Direct-reading coaxial frequency meter measures 3.7. 12.4 GHz , with no spurious responses. High resolution with a spiral dial over 80 inches (2030 mm) long. Accuracy 0.17%, including dial calibration, temperature over a $20^{\circ} \mathrm{C}$ range, relative humidity, backlash. Model 537A, $\$ 500$. Other coaxial and waveguide frequency meters measure $0.96-40 \mathrm{GHz}$.

537A Coaxial Frequency Meter

Instrument	Frequency range	Model	Price
Wavemeter, measure the rf frequency of pulsed microwave signals, $\pm 0.5 \mathrm{MHz}$ accuracy.	$1070-1110 \mathrm{MHz}$	8905 A	$\$ 395$
Coax frequency meter with high resolution, easy-to-read dial, no spurious responses; direct measurement, high accuracy.	$0.96-4.2 \mathrm{GHz}$	536 A	$\$ 500$
Coax frequency meter, same characteristics as 536 A, improved accuracy, extremely wide frequency coverage in single unit.	$3.7-12.4 \mathrm{GHz}$	537 A	$\$ 500$
Waveguide frequency meters similar to 536A, 537 A, models for G, J, H, X, M, P, K, R Bands.	$3.95-40 \mathrm{GHz}$	532 Series	$\$ 200-\$ 400$

Spectrum analyzer

Fully calibrated controls, plus close attention to human factors in the design are features of the $851 \mathrm{~B} / 8551 \mathrm{~B}$ Spectrum Analyzer. Covering the range from 10.1 MHz to 40 GHz , the analyzer provides the accuracy and flexibility needed for applications such as RFI measurements, spectrum surveillance, spectrum signature work, and semiconductor evaluations.

Separate rf and display sections are interconnected to comprise a triple-conversion superheterodyne receiver with swept first local oscillator and oscilloscope readout. Ten calibrated spectrum widths from 100 kHz to 2 GHz permit detailed examination of individual signals or investigation of broad frequency bands.

Other key specifications include 4 GHz image sep. aration; input sensitivity of -65 to -100 dbm , depending on frequency; 60 db display range on 7×10 cm crt in LOG mode (also choice of linear or square displays); display accuracy $\pm 3 \%$ f.s. linear, $\pm 5 \%$ f.s. square, $\pm 2 \mathrm{db} \log .60 \mathrm{db}$ input attenuator allows

Spectrum analyzer accessories

Frequency comb generator provides highly accurate markers for frequency calibration of the HewlettPackard 851B/8551B Spectrum Analyzer; markers with 1,10 and 100 MHz spacing are usable from fundamental marker frequency to beyond 5 GHz , 0.01% accuracy. Model 8406A, \$500.
Bandpass and low-pass filters, coaxial preselectors for the spectrum analyzer, limit input to a specific range and minimize interference from signals outside

input signal levels up to 1 watt. Frequency response typically $<1.5 \mathrm{db}$ over 100 MHz spectrum widths, ± 2 to $\pm 5 \mathrm{db}$ over full 2 GHz span. 851B Display Section, \$2400; 8551B RF Section, $\$ 7100$.
that range. 8430 Bandpass Series, $\$ 210$ to $\$ 275$; 360 Low-Pass Series, $\$ 50$ to $\$ 70$.
Notch filter offers narrow rejection (2 MHz) at 2 GHz for observation of broadband signals without interference from signals at spectrum analyzer's 2 GHz IF frequency; 8439A, \$240.
Crystal filter (20 MHz) improves skirt characteristics of the 1 kHz IF of the display section for greater resolution of closely spaced signals; 8442A, $\$ 225$.

SIGNAL SOURCES, MODULATORS, ATTENUATORS

Frequency synthesizers

Fast digital and remote frequency selection (<20 $\mu \mathrm{sec}$) of signals with high spectral purity, dc to 50

MHz -from one of three frequency synthesizers from Hewlett-Packard. Aging rate of internal oscillator (<3

SIGNAL SOURCES, MODULATORS, ATTENUATORS
continued
parts in 10^{9} per day) is preserved in output, superior signal-to-noise ratio, high spurious signal rejection, continuous output level control, search oscillator for continuous tuning of any selected column, external sweep capability. Three solid-state instruments, varying in frequency output, output increments. Each provides $1 \mathrm{~V} \mathrm{rms} \pm 1 \mathrm{db}$ into 50 -ohm resistive load, may be used with internal oscillator or external standard.

5102A Frequency Synthesizer

Instrument*	Output frequency	Output increments	Spurious signals	Frequency response	Switching time	Model	Price
Dual-range synthesizer.	$0.1 \mathrm{~Hz}-1 \mathrm{MHz}$	0.1 Hz	70 db down	Flat within $\pm 0.5 \mathrm{db}$	$<20 \mu \mathrm{sec}$	5102A	\$6500
	$0.01 \mathrm{~Hz}-100 \mathrm{KHz}$	0.01 Hz	90 db down				
Dual-range synthesizer.	$1 \mathrm{~Hz}-10 \mathrm{MHz}$	1 Hz	50 db down	Flat within $\pm 0.5 \mathrm{db}$ on 1 MHz range, \pm 1 db on 10 MHz range	$<20 \mu$ sec	5103A	\$7100
	$0.1 \mathrm{~Hz}-1 \mathrm{MHz}$	0.1 Hz	70 db down				
Two-unit highfrequency model incorporating driver and synthesizer.	dc- 50 MHz	0.01 Hz	90 db down	$\begin{aligned} & \pm 1 \mathrm{db}, 100 \mathrm{kHz}- \\ & 50 \mathrm{MHz} \\ & +2-4 \mathrm{db}, 50 \mathrm{~Hz}- \\ & 100 \mathrm{kHz} \end{aligned}$	$<20 \mu \mathrm{sec}$	5100A Synthesizer	\$8150
						5110A Driver	\$4350

*Time base aging rate $\pm 3 / 10^{9} / 24$ hours, all models

Pulse and

square-wave

generators

222A Pulse Generator

Instrument	Repetition rate	Rise time	Output	Model	Price
Square-wave generator has symmetry control and permits exact square-wave balance, sync input, ideal for video and audio amplifier testing.	$1 \mathrm{~Hz}-1 \mathrm{MHz}$	$<20 \mathrm{nsec}$ $<100 \mathrm{nsec}$	$\begin{aligned} & -3.5 \mathrm{~V} \text { into } 75 \Omega \\ & \text { adjustable } \\ & \text { - } 27 \mathrm{~V} \text { into } 600 \Omega \\ & \text { adjustable } \end{aligned}$	211A	\$350*
Pulse generator, + or - pulses, 50 w peak, pulse width variable $0.07-10 \mu \mathrm{sec}$, pulse position variable $10 \mu \mathrm{sec}$ advance to $100 \mu \mathrm{sec}$ delay, external triggering and sync.	$50 \mathrm{~Hz}-5 \mathrm{kHz}$	20 nsec	$\pm 50 \mathrm{~V} \text { into } 50 \Omega$ adjustable	212A	\$775
Pulse generator may be externally triggered up to $100 \mathrm{kHz}, 100 \mathrm{nsec}$ flat pulse width, total $2 \mu \mathrm{sec}$ width.	Approximately $100 \mathrm{kHz}$	$<0.1 \mathrm{nsec}$	$\pm 175 \mathrm{mV}$ into 50Ω, fixed. 50Ω source impedance	213B	\$215
Pulser, solid-state unit with advance trigger, output pulse flat $>100 \mathrm{nsec}$.	100 kHz	$\begin{aligned} & <1 \mathrm{nsec}(-) \\ & <1.2 \mathrm{nsec}(+) \end{aligned}$	$\pm 10 \mathrm{~V}$ into 50Ω adjustable	8000A	\$375**
Pulse generator delivers 200 watts; single, gated or double pulses; pulse position adjustable 10 msec advance or delay of sync out, width 0.05 $\mu \mathrm{sec}-10 \mathrm{msec}$, external triggering with selectable trigger point.	$10 \mathrm{~Hz}-1 \mathrm{MHz}$	$\begin{aligned} & <13 \mathrm{nsec} \\ & (15 \mathrm{nsec} \text { at } \\ & 100 \mathrm{~V}) \end{aligned}$	$\pm 100 \mathrm{~V}$ into 50Ω adjustable	214A	\$875

Instrument	Repetition rate	Rise time	Output	Model	Price
Pulse generator, external triggering with selectable trigger point, single and gated pulses, width continuously adjustable to 100 nsec , position adjustable 140 nsec advance to 10 nsec delay of sync out.	$100 \mathrm{Hz-1} \mathrm{MHz}$	<1 nsec	$\pm 10 \mathrm{~V}$ into 50Ω adjustable. 50Ω source impedance	215A	\$1875
Pulse generator, economical generalpurpose instrument, width 30 nsec5 msec continuously adjustable, single pulses, external triggering.	$10 \mathrm{~Hz} \cdot 10 \mathrm{MHz}$	<4 nsec	$\pm 10 \mathrm{~V}$ into 50Ω adjustable. 50Ω source impedance	222A	\$690
Pulse generator, internal or external triggering, very accurately controlled and specified pulse shape, width 5-100 nsec, pulse bursts or continuous pulses.	$1-100 \mathrm{MHz}$	<2.5 nsec	$\pm 10 \mathrm{~V}$ into 50Ω adjustable. 50Ω source impedance	216A	\$1775
Digital delay generator uses plug-ins (below) to produce 2 accurate time delay intervals; delays 0.1-9999 $\mu \mathrm{sec}$ or 1-10,000 periods of external time base; rack mounting.	$10 \mathrm{~Hz}-10 \mathrm{kHz}$			218A	\$2250
Dual trigger plug-in, one pulse at beginning of time intervals or at end of one interval, with second pulse at end of other interval, $>1.5 \mu \mathrm{sec}$ wide.		$0.1 \mu \mathrm{sec}$	+25 V into 50Ω	219A	\$125
Dual pulse plug-in is similar to 219A, with adjustable amplitude, adjustable $0.2-5 \mu \mathrm{sec}$ width.	,	60 nsec	$\begin{aligned} & \pm 25 \mathrm{~V} \text { into } 50 \Omega \\ & \text { adjustable } \end{aligned}$	219B	\$490
Digital pulse duration plug-in produces variable duration, variable delay pulses, width or delay $1-10,000 \mu \mathrm{sec}$.		$30 \mathrm{nsec}(90 \Omega)$	$\begin{aligned} & -7.5 \mathrm{~V} \text { into } 90 \Omega \\ & \text { adjustable } \\ & -45 \mathrm{~V} \text { into } 500 \Omega \\ & \text { adjustable } \end{aligned}$	219C	\$375

*Add $\$ 5$ for rack mount. **Price in U.S. f.o.b. Palo Alto, California. For price in other countries, contact local hp field office.

Sweep oscillators

8690A Sweep Oscillator with 8692B Plug-in Module
Maximum versatility and utility are yours with new hp 8690 Series Sweep Oscillators. Single main frame (8690A) accepts plug-in BWO modules to cover com-
plete 1.40 GHz range. Compact ($81 / 2^{\prime \prime}$ high) sweepers have $13^{\prime \prime}$ full-width slide-rule type frequency scale for easy readability, high resolution. Neat, human-engineered front panel provides pushbutton mode selection plus quick-reading, calibrated dial indicators for start, stop and marker frequencies. Completely flexible sweep modes provide: Start-stop sweep, up or down, between any points in the range; marker sweep, for expanding any portion of the range; $\Delta \mathrm{F}$ sweep, for detailed study of symmetrical area centered on any frequency; manual sweep, for complete operator control; automatic recurrent sweeps; sweep synchronized, internally or externally. Outputs for scope or x-y recorder. Model 8690A main frame, $\$ 1550$, accepts BWO modules listed in table below. (Also see Model 1416A Swept Frequency Indicator, page 10.)

Instrument	Frequency range	Power (maximum leveled across band)	Frequency accuracy	Model
Frequency module plug-ins for 8690A sweep oscillator; "B" models have PIN diode attenuators for amplitude modulation and leveling independent of the BWO. Total frequency range 1-40 GHz (see next page.)	$1-2 \mathrm{GHz}$	$\geq 100 \mathrm{mw}$	$\pm 1 \%$	8691 A
	$2-4 \mathrm{GHz}$	$\geq 70 \mathrm{mw}$	$\$ 1900$	
		$\geq 70 \mathrm{mw}$	$\$ 10 \mathrm{MHz}$	8691 B

SIGNAL SOURCES, MODULATORS, ATTENUATORS
continued

Instrument	Frequency range	Power (maximum leveled across band)	Frequency accuracy	Model	Price
Frequency module plug-ins for 8690A sweep oscillator;"B"' models have PIN diode attenuators for amplitude modulation and leveling independent of the BWO.	$8-12.4 \mathrm{GHz}$	$\geq 50 \mathrm{mw}$	$\pm 1 \%$	8694 A	$\$ 1575$
		$\geq 30 \mathrm{mw}$	$\pm 30 \mathrm{MHz}$	8694 B	$\$ 1925$
	$12.4-18 \mathrm{GHz}$	$\geq 40 \mathrm{mw}$	$\pm 1 \%$	8695 A	$\$ 1700$
	$18-26.5 \mathrm{GHz}$	$\geq 10 \mathrm{mw}$	$\pm 1 \%$	8696 A	$\$ 2500$
	$26.5-40 \mathrm{GHz}$	$\geq 5 \mathrm{mw}$	$\pm 1 \%$	8697 A	$\$ 4300$

Sweep signal generator

For testing rf passband amplifiers $4.5 \cdot 120 \mathrm{MHz}$; includes precision cw signal generator, sweep frequency generator providing linear frequency deviation $\pm 1 \%$ to $\pm 30 \%$ of center frequency. AM capability included for cw output. Marker system produces birdie-type
markers, adjustable pip interpolation markers and a composite signal containing the markers added to the response of the system under test. Useful for checking selectivity and sensitivity of circuits, study of bandpass characteristics, etc. Model 240A, \$1995.

3300A Function Generator with 3302A Plug-in

241A Pushbutton Oscillator

Instrument	Dial accuracy	Frequency range (response)	Model	Price
Variable-phase function generator, four simultaneous outputs with one variable phase square and sine wave adjustable over a 360° range and one fixed phase square and sine wave. Rise and fall times of square waves <200 $\mu \mathrm{sec}$. Amplitude stability $\pm 0.1 \mathrm{db}$. Each output has 40 db variable attenuator. Maximum output 30 Vp -p open circuit. 7 ranges; 0.00005 Hz available on special order.	$\pm 1 \%$	$\begin{aligned} & 0.005 \mathrm{~Hz}-60 \mathrm{kHz} \\ & (\pm 1 \%) \end{aligned}$	203A	\$1200
Low-frequency function generator, continuously variable sine, square, triangular waves for simulating mechanical, physical, medical phenomena; maximum output 30 V -p into $4 \mathrm{k} \Omega ; 5$ ranges.	$\pm 2 \%$	$\begin{aligned} & 0.008 \mathrm{~Hz}-1200 \mathrm{~Hz} \\ & (\pm 1 \mathrm{db}) \end{aligned}$	202A	\$550*
Function generator with plug-in capability, variable phase and phase lock; sine, square, triangular output; linear voltage programmability; single cycle, multiple cycle, free-run modes, isolated dual-output amplifiers; single-ended floating outputs.	$\pm 1 \%$	$\begin{aligned} & 0.01 \mathrm{~Hz}-100 \mathrm{kHz} \\ & (\pm 1 \%) \end{aligned}$	3300A	\$570
Auxiliary plug-in permits standard operation of 3300A.			3301 A	\$ 20
Trigger/phase lock plug-in, for single and multiple cycle operation of 3300A, with variable start/stop phase and phase lock.	$\pm 10^{\circ}$		3302 A	\$190
Audio oscillator, high power, 3 watts output (42.5 V into 600Ω), 40 db attenuator in 10 db steps, distortion $<1 \%$, output $z 600 \Omega, 3$ ranges.	$\pm 1 \%$	$\begin{aligned} & 20 \mathrm{~Hz}-20 \mathrm{kHz} \\ & (\pm 1 \mathrm{db}) \end{aligned}$	201C	\$250**
Audio signal generator; high power, 5 watts; $<1 \%$ distortion; 2 panel meters measure input and output of device being tested; output z balanced 50, 200, 600 and 5000Ω; 3 ranges.	$\pm 2 \%$	$\begin{aligned} & 20 \mathrm{~Hz}-20 \mathrm{kHz} \\ & (\pm 1 \mathrm{db}) \end{aligned}$	205AG	\$600*

Instrument	Dial accuracy	Frequency range (response)	Model	Price
Audio signal generator; $<0.1 \%$ distortion; metered output variable in $0.1,1$ and 10 db steps; output Z balanced 50 , 150 and 600 s; 3 ranges.	$\pm 2 \%$	$\begin{aligned} & 20 \mathrm{~Hz}-20 \mathrm{kHz} \\ & (\pm 0.2 \mathrm{db}) \end{aligned}$	206A	\$900*
Audio oscillator, balanced output 1 w or 24.5 V into 600Ω, distortion $<1 \%, 4$ ranges.	$\pm 2 \%$	$\begin{aligned} & 20 \mathrm{~Hz}-40 \mathrm{kHz} \\ & (\pm 1 \mathrm{db}) \end{aligned}$	200AB	\$165**
Low-frequency oscillator, balanced output 10 V or 160 mw into 600:2, $<0.5 \%$ distortion, 5 ranges.	$\pm 2 \%$	$\begin{aligned} & 1 \mathrm{~Hz}-100 \mathrm{kHz} \\ & (\pm 1 \mathrm{db}) \end{aligned}$	202C	\$325**
Battery-operated oscillator, floating output 10 mw into 600 s., $<1 \%$ distortion, typical short-term stability 5 parts in 104, 5 ranges (optional ac line operation).	$\pm 3 \%$	$\begin{aligned} & 5 \mathrm{~Hz}-560 \mathrm{kHz} \\ & (\pm 3 \%) \end{aligned}$	204B	\$315
Test oscillator, rechargeable battery or ac line operation. monitor meter and 6 -position attenuator calibrated in volts. Option Ol has monitor meter and $110-\mathrm{db}$ attenuator calibrated in dbm.	$\pm 3 \%$	$\begin{aligned} & 5 \mathrm{~Hz}-560 \mathrm{kHz} \\ & (\pm 3 \%) \end{aligned}$	208A	\$525
			$\begin{aligned} & \text { 208A/ } \\ & \text { Option } 01 \end{aligned}$	\$535
Wide-range oscillator, economical, low distortion ($\pm 0.2 \%$), output 10 V into $600 \Omega, 5$ ranges. Special order H20-200CD has very low $\pm 0.06 \%$ distortion.	$\pm 2 \%$	$5 \mathrm{~Hz}-600 \mathrm{kHz}$	200CD	\$195
			H20.200CD	\$250
Oscillator, useful with 739AR Frequency Response Test Set (page 6), rack mount, 5 ranges.	$\pm 2 \%$	$5 \mathrm{~Hz}-600 \mathrm{kHz}$	200 S	\$225**
Pushbutton oscillator, 3-digit frequency resolution, 4500 increments with vernier overlap, maximum distortion 1%. output +10 to -30 dbm into 600 s.	$\pm 1 \%$	$10 \mathrm{~Hz}-1 \mathrm{MHz}$	241A	$\$ 490$
Test oscillator, wide frequency range, low distortion ($<1 \%$), 90 db attenuator, output monitor, $\pm 0.1 \%$ amplitude stability; output 200 mw into $50 \Omega, 16 \mathrm{mw}$ into $600 \Omega, 6.32 \mathrm{~V}$ open circuit; 6 ranges.	$\pm 2 \%$	$\begin{aligned} & 10 \mathrm{~Hz}-10 \mathrm{MHz} \\ & (\pm 2 \%) \end{aligned}$	651 A	\$590

*Rack mount $\$ 15$ less
**Rack mount, add \$5

Oscillators and signal generators ...above 10 MHz

Instrument	Frequency range	Model	Price
Signal generator, broad modulation capability, output 3 V into 50Ω, high stability with 8708A Synchronizer, constant output across band. (Model 606A, $\$ 1350$, similar but cannot be stabilized with 8708A.)	$50 \mathrm{kHz}-65 \mathrm{MHz}$	606B	\$1550**
VHF oscillator, general-purpose signal source with 25-250 mw output, AM 0-30\%; 13515A doubler probe extends frequency range to cover $500-1000 \mathrm{MHz}$, is priced at $\$ 95$.	$10-500 \mathrm{MHz}$ 。	32008	\$475
FM/AM signal generator for vhf, TV; $0.1 \mu^{\mu} \mathrm{V}-0.2 \mathrm{~V}, \mathrm{AM} 0-100 \%$.	$54-216 \mathrm{MHz}$	202 H	\$1475
Telemetering signal generator, similar to 202 H above.	$195-270 \mathrm{MHz}$	202J	\$1595
VHF signal generator, output 1 V into 50Ω.	$10-480 \mathrm{MHz}$.	608C	\$1200*
VHF signal generator, direct calibration; $0.1 \mu \mathrm{~V}-1 \mathrm{~V}$ into 50Ω, constant internal impedance; AM, pulse modulation, low incidental FM, constant output level, low envelope distortion.	$10-480 \mathrm{MHz}$	608 E	\$1450*
VHF signal generator, similar characteristics to 608 E above; 0.5 V into 50Ω, works with 8708A Synchronizer, narrow-band phase or frequency modulation.	$10-455 \mathrm{MHz}$	608F	\$1600*
UHF signal generator, $0.1 \mu \mathrm{~V}-0.5 \mathrm{~V}$ output into 50Ω; direct calibration, AM and pulse or square-wave modulation.	$450-1230 \mathrm{MHz}$	612 A	\$1400*
UHF signal generator, $1 / 2 \mathrm{mw} 800-900 \mathrm{MHz}, 1 \mathrm{mw} 900-2100 \mathrm{MHz}$; direct calibration, pulse or frequency modulation.	$800-2100 \mathrm{MHz}$	614 A	\$1950*
UHF signal generator, calibrated output +10 to -127 dbm into 50 s ; calibrated and leveled below 0 dbm ; internal square-wave, external pulse, $A M$, frequency modulation.	$800-2400 \mathrm{MHz}$	8614A	\$2100
UHF signal source, output 15 mw into 50Ω, precision attenuator, internal squarewave, external pulse or frequency modulation.	$800-2400 \mathrm{MHz}$	8614B	\$1450

SIGNAL SOURCES, MODULATORS, ATTENUATORS
continued

Instrument	Frequency range	Model	Price
Signal generator, output 0 dbm to -127 dbm into 50Ω; FM or pulse modulation; direct calibration.	$1.8-4.2 \mathrm{GHz}$	616B	\$1950*
Signal generator, output +10 to -127 dbm into $50 \Omega 2(+3 \mathrm{dbm}$ maximum above 3 GHz), calibrated and leveled below 0 dbm ; internal square-wave, external pulse modulation, AM, frequency modulation.	$1.8-4.5 \mathrm{GHz}$	8616A	$\$ 2100$
Signal source; output $15 \mathrm{mw} 1.8-3 \mathrm{GHz}, 3 \mathrm{mw} 3-4.5 \mathrm{GHz}$, precision attenuator.	$1.8-4.5 \mathrm{GHz}$	8616B	\$1450
SHF signal generator; output 1 mw or 0.223 V to $0.1 \mu \mathrm{~V}$ into 50Ω, direct calibration; FM, pulse or square-wave modulation.	$3.8-7.6 \mathrm{GHz}$	618C	\$2250*
SHF signal generator; output 0.223 V to $0.1 \mu \mathrm{~V}$ into 50Ω; direct calibration, FM , pulse or square-wave modulation.	$7-11 \mathrm{GHz}$	620B	\$2250*
SHF signal generator; output 1 pw to 10 mw (-90 to +10 dbm); direct calibration, FM, pulsed or square-wave modulation.	$10-15.5 \mathrm{GHz}$	626 A	\$3400*
SHF signal generator; similar to 626A above.	$15-21 \mathrm{GHz}$	628A	\$3400*

Frequency stabilizing synchronizers

These instruments provide absolute control of frequency signals by phase-locking the output of the controlled instrument to an internal or external frequency standard. Ideal for stable signals for doppler systems, radio astronomy, microwave spectroscopy, microwave frequency standards, parametric amplifier

8708A Synchronizer pumps, radar cross-section studies, etc.

Instrument	Model	Price
Signal generator synchronizer uses a sampling phase-lock technique to provide a stability of 2 parts in 10^{\prime} for ten minutes with 606 B (50 kHz-65 MHz) and 608 F (10-455 MHz) signal generators. This 250 -times improvement in stability simplifies and speeds all tests in this important frequency range.	8708 A	$\$ 1800$
The synchronizer also provides capability for very linear frequency and phase modulation of the 606 B and 608 F signal generators.		
Oscillator synchronizer stabilizes frequencies $0.1-40 \mathrm{GHz}$, permits FM up to 0.5 MHz deviation. manual tuning over 2 MHz range; automatic search oscillator for easy synchronization.	2650 A	$\$ 1450$
Frequency standard synchronizer, use with 5 MHz standards for phase-locked synthesis of standard microwave signals, 60 MHz steps $1-12.4 \mathrm{GHz}$; high spectral purity with typically 80 db signal/spurious rejection ratio.	2654 A	$\$ 1750$

Communication test sets, air navigation signal generators

Instrument	Model	Price
$\begin{array}{l}\text { Portable communications test set for aligning, maintaining multichannel communication systems; } \\ 5 \mathrm{~Hz}-560 \mathrm{kHz} \text { oscillator, }-72 \text { to }+52 \text { dbm voltmeter; patch panel to match oscillator and voltmeter to }\end{array}$	3550 A	$\$ 1150$
$1355,-600.900-$ ohm systems. Special telephone patch panels available; provide standdard telephone		
jacks for input, output functions; also internal holding coil, dial through and talk positions.		

Instrument	Model	Price
Omni-range signal generator, $88-140 \mathrm{MHz}$, crystal oscillator 110.1 and 114.9 MHz ; output $0.1 \mu \mathrm{~V}$ $0.2 \mathrm{~V} / 50$ ohms, AM modulation capability.	211A	\$2190
Glide slope signal generator for FAA instrument landing system; 2 generators, RF and IF, 100\% modulation, internal or external; RF $329.3-335 \mathrm{MHz}$ in 0.3 MHz steps; IF 20.7 MHz or changeable by crystal change.	232A	\$2375
DME/ATC test set for testing, calibrating transponder aircraft equipment; $962-1213 \mathrm{MHz},-10$ to $-100 \mathrm{dbm} / 50$ ohms; pulse modulation; simulation of TACAN bearing information, direct readout of ATC reply frequency, side lobe suppression capabilities, DME pulse shape.	8925A	\$12,090
SHF test set includes signal generator, power meter, frequency meter; $5925-7750 \mathrm{MHz}{ }^{\star}$, measures receiver sensitivity, selectivity, transmitter tuning, power level; 0 dbm output; internal FM; external FM, pulse or square-wave modulation.	623B	\$2250
H-band test set, same functions as 623 B above; higher power (+15 dbm); 7.1-8.5 GHz , covers government communications band.	5636	\$3800
X-band test set, same functions as 623 B above; 0 dbm output; $8.5-10 \mathrm{GHz}$; internal FM.	624 C	\$2265**

*Using any of 3 klystrons **Rack mount model \$15 less

Frequency converters, doublers, mixers

Instrument	Output frequency	Model	Price
Univerter extends frequency of 202H, 202J Signal Generators (page 31), stability 0.001% (5 min.); output $1 \mu \mathrm{~V}-1 \mathrm{~V}$.	$100 \mathrm{kHz}-55 \mathrm{MHz}$	207H	$\$ 595$
Frequency doubler, accessory for use with signal generators, trequency synthesizers, sources, $0.5 \mathrm{MHz}-500 \mathrm{MHz}$; input 180 mw max.	$1 \mathrm{MHz}-1 \mathrm{GHz}$	10515A	\$120
Frequency doubler set for use with $9-13.25 \mathrm{GHz}$ signal sources, up to 100 mw input power, conversion loss 18 db at 10 mw input.	$18-26.5 \mathrm{GHz}$	938A	\$1700*
Frequency doubler set for use with $13.25-20 \mathrm{GHz}$ signal sources, up to 100 mw input power, conversion loss 18 db at 10 mw input.	$26.5-40 \mathrm{GHz}$	940A	\$1700*
Double balanced mixer mixes, amplitude or pulse modulates; L\&R port input 40 mw or 40 mA max.; X port 20 mw or 20 mA max./ 50 ohms; 7 db noise; 8 db loss; low intermodulation.	L\&R $500 \mathrm{kHz}-500 \mathrm{MHz}$; $X \mathrm{dc}-500 \mathrm{MHz}$	10514A	\$250
Spectrum generator generates train of 1 nsec -wide pulses, 0.75 V min . pulse height/ 50 ohms; $10-75 \mathrm{MHz}$ input.	$25-50 \mathrm{MHz}$	10511A	\$150

*Add $\$ 20$ for rack mount

Attenuators, modulators

354A Variable Coaxial Attenuator

Instrument	Frequency range	Attenuation range	Model	Price
Variable lab attenuators, 5 w power capacity (500 ohms, 350C; 600 ohms, 350 D).	dc-1 MHz	$110 \mathrm{db}, 1 \mathrm{db}$ steps	$\begin{aligned} & 350 \mathrm{C} \\ & 350 \mathrm{D} \end{aligned}$	$\$ 125$ $\$ 125$
VHF attenuators, 0.5 w average, 350 V peak/50 ohms.	dc. 1000 MHz	$12 \mathrm{db}, 1 \mathrm{db}$ steps $120 \mathrm{db}, 10 \mathrm{db}$ steps	$\begin{aligned} & 355 C \\ & 355 D \end{aligned}$	$\begin{aligned} & \$ 140 \\ & \$ 140 \end{aligned}$
Variable coax attenuator; turret-type, small, convenient for bench or rack, removable base, low residual attenuation, simple knob rotation.	dc. 12.4 GHz	$0.60 \mathrm{db}, 10 \mathrm{db}$ steps	354 A	\$450
Continuously variable coax attenuators; direct reading, calibrated variable directional coupling, isolation.	$\begin{aligned} & 500-1000 \mathrm{MHz} \\ & 1000-2000 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & 5 \cdot 120 \mathrm{db} \\ & 6.120 \mathrm{db} \end{aligned}$	$\begin{aligned} & 393 A \\ & 394 A \end{aligned}$	$\begin{aligned} & \$ 525 \\ & \$ 550 \end{aligned}$
Coaxial pads; wide range, 10 db or 20 db options, $\pm 1 \mathrm{db}$ over full range; attenuation measured at four frequencies and marked on each pad.	$\mathrm{dc}-12.4 \mathrm{GHz}$	$10 \mathrm{db}, 20 \mathrm{db}$ options	8491A	\$ 50
Variable waveguide attenuators, S. through R-Bands, flap attenuators.	2.6 .40 GHz	20 db , variable	375A	$\begin{aligned} & \$ 100- \\ & \$ 200 \end{aligned}$
Precision variable waveguide attenuators, S. through R-Bands, <1.15 swr.	2.6 .40 GHz	$0.50 \mathrm{db}^{*}$	$\begin{aligned} & 382 \mathrm{~A} / \\ & \mathrm{B} / \mathrm{C} \end{aligned}$	$\begin{aligned} & \$ 275- \\ & \$ 700 \end{aligned}$

SIGNAL SOURCES, MODULATORS, ATTENUATORS
continued

Instrument	Frequency range	Attenuation range	Model	Price
PIN diode modulators eliminate incidental FM, permit pulse modulation, leveling, AM, absorb rf power independent of signal source.	$0.8-12.4 \mathrm{GHz}$	35 db and 80 db versions	8730 Series	$\$ 300-$ $\$ 500$
Modulator for driving 8730 PIN Modulators above, or other microwave sources.			8403 A	$\$ 700$

*S-Band B, C, models 0.60 db

COAXIAL AND WAVEGUIDE INSTRUMENTS

Hewlett-Packard microwave test equipment includes a wide range of high-quality, value-priced coaxial and waveguide items for measurement of virtually all microwave parameters. Special care in design and manufacture of these instruments, plus complete testing, assures high performance in all applications. Much of the waveguide equipment is available in several frequency bands. See bands to right.

Many Hewlett-Packard coaxial instruments are available with the new 7 mm precision connectors to provide greater measuring accuracy at frequencies to

Waveguide band	Frequency (GHz)
S	2.6 to 3.95
G	3.95 to 5.85
J	5.3 to 8.2
H	7.05 to 10
X	8.2 to 12.4
M	10 to 15
P	12.4 to 18
K	18 to 26.5
R	26.5 to 40

18 GHz . Ask your hp field engineer for up-to-date information on these instruments.

Crystal detectors, bolometers and crystal mounts

J424A Waveguide Detector Mount

423A Coaxial Crystal Detector

Instrument	Frequency range	Max. swr	Model	Price
Coax crystal detectors for use with 415,416 Meters, sensitivity $420 \mathrm{~A}, 0.1 \mathrm{mV} / \mu \mathrm{w} ; 420 \mathrm{~B}, 0.05 \mathrm{mV} / \mu \mathrm{w} ; 420 \mathrm{~B}$ available in matched pairs.	$10 \mathrm{MHz}-12.4 \mathrm{GHz}$	3	420A	\$ 50
	$1-4 \mathrm{GHz}$ (useful to 12.4)		420B	\$ 75
Waveguide crystal detectors for K- and R-Band application, for use with 415,416 Meters; matched pairs available.	$18-26.5 \mathrm{GHz}$	2.5	K422A	\$230
	$26.5-40 \mathrm{GHz}$	3	R422A	\$230
Coax crystal detector, flat response $(< \pm 0.2 \mathrm{db}$ /octave $10 \mathrm{MHz}-8 \mathrm{GHz},< \pm 0.5 \mathrm{db}$ total range), high sensitivity; matched pairs available.	$10 \mathrm{MHz}-12.4 \mathrm{GHz}$	1.5	423A	\$125
Waveguide crystal detectors, flat response ($\pm 0.5 \mathrm{db}$ max.), high sensitivity; 7 models, S. to P-Bands.	$2.6-18.0 \mathrm{GHz}$	1.5	424A	\$135.\$250
Bolometer mount uses barretter-like fuses as detection elements.	$10-1000 \mathrm{MHz}$	1.25:1	476A	\$ 85
Waveguide detector mounts, tunable, offered in G- through X-Bands, four models.	$3.95-12.4 \mathrm{GHz}$	1.5	485B	\$75-\$120

Directional

 detectors and couplers

786D Coaxial Directional Detector

Instrument	Frequency range	Model	Price
Coax dual-directional couplers; high directivity min. 40 db (30 db with 777D), low swr, low insertion loss; 50 w av., 10 kw peak.	$215-450 \mathrm{MHz}$	774D	\$200
	$450-940 \mathrm{MHz}$	775 D	\$200
	$940-1900 \mathrm{MHz}$	776D	\$200
	$1900-4000 \mathrm{MHz}$	7770	\$250
Coax directional couplers, flat frequency response, high directivity, low swr, low insertion loss.	$0.96-2.11 \mathrm{GHz}$	796D	\$200
	$1.9-4.1 \mathrm{GHz}$	797 D	\$200
	$3.7-8.3 \mathrm{GHz}$	798 C	\$225
Coax directional detectors, flat frequency response (0.5 db max. sweptfrequency tested), high directivity ($17-30 \mathrm{db}$), high sensitivity; ideal for leveling applications, especially useful with sweep oscillators; X781A for monitoring between coax source and waveguide system.	$0.96-2.11 \mathrm{GHz}$	786D	\$300
	$1.9-4.1 \mathrm{GHz}$	787 D	\$300
	$3.7-8.3 \mathrm{GHz}$	788 C	\$325
	$8-12.4 \mathrm{GHz}$	789 C	\$350
	$8-12.4 \mathrm{GHz}$	X781A	\$350
Waveguide directional couplers, high coupling accuracy ($3,10,20 \mathrm{db}$), directivity better than 40 db , low swr; S- through R-Bands.	$2.6-40 \mathrm{GHz}$	$\begin{aligned} & \text { 752A, } \\ & \text { C. D } \end{aligned}$	\$125-\$450
Crossguide directional couplers; $20,30 \mathrm{db}$ coupling; high accuracy, low swr, save space, weight; S- through X-Bands.	$2.6-12.4 \mathrm{GHz}$	750D, E	\$60-\$150

Terminations, shorts, loads and reflections

Instrument	Frequency range	Model	Price
Coax terminations, the 906A movable low-reflection load for terminating 50 -ohm systems; 908A non-movable; low swr (less than 1.05).	$1-12.4 \mathrm{GHz}$	906A	\$325
	$\mathrm{dc}-4 \mathrm{GHz}$	908A	\$ 35
Waveguide terminations; low swr (typically 1.015 to 1.04); permit matched load; S- through P-Bands.	$2.6-18 \mathrm{GHz}$	910A, B	\$35-\$75
High-power waveguide termination; 500 w average power, peak power 100 kw .	$8.2-12.4 \mathrm{GHz}$	X913A	\$100
Waveguide shorting switch to provide removable short circuit in waveguide system.	$8.2-12.4 \mathrm{GHz}$	X930A	\$160
Waveguide adjustable shorts, S- through R-Bands, (except X-Bands, see below), provide reference point in system.	$2.6-40 \mathrm{GHz}$	920A, B	\$85-\$155
Waveguide movable short for fast phasing and reference plane independent of frequency; ideal for swept-frequency applications.	8.2-12.4 GHz	X923A	\$ 75
Waveguide movable loads, S-through R-Band; max. swr 1.01.	$2.6-40 \mathrm{GHz}$	914A, B	\$60-\$250
Waveguide standard reflections, for standardizing swr-measuring set-ups.	8.2-12.4 GHz	X916A-E	\$125

Tuners, phase shifters

Instrument	Frequency range	Model
Coax slide-screw tuner for correcting discontinuities or flattening waveguide, coax systems; match loads, bolometers, antennas to impedance; correctable swr 5; insertion loss at max. correctable swr 0.5 db; characteristic $Z 50$ ohms.	$500-4000 \mathrm{MHz}$	872 A
Waveguide slide-screw tuners for correcting discontinuities, matching loads, terminations, bolometers, antennas to characteristic impedances; S-through R-Bands.	$2.6-40 \mathrm{GHz}$	$\$ 525$
Waveguide phase shifters, full 360 -electrical-degree range; direct-reading, high accuracy; J., X-, P-Bands.	870 A	$\$ 130-\$ 300$
	$8.3-8.2 \mathrm{GHz}$	$\mathrm{J885A}$
	$\$ 550$	

Adapters, low-pass filters

Instrument	Frequency range	Model	Price
Coax/waveguide adapters, swr <1.25:1; S- through X-Bands.	$2.6-12.4 \mathrm{GHz}$	281 A	$\$ 25-\$ 50$
Waveguide adapters for transition between systems; $\mathrm{H} / \mathrm{X}, \mathrm{M} / \mathrm{X}, \mathrm{M} / \mathrm{P}$, $\mathrm{N} / \mathrm{P}, \mathrm{N} / \mathrm{K}$.	$8.2-22 \mathrm{GHz}$	$292 \mathrm{~A}, \mathrm{~B}$	$\$ 25-\$ 40$
Coax low-pass filters, suppress harmonics, increase swr measurement accuracy; cutoff frequencies $700,1200,2200$ and 4100 MHz.		360 A,	$\$ 50-\$ 70$
Waveguide low-pass filters, suppress harmonics, increase swr measurement accuracy; X - through R-Bands.	$8.2-40 \mathrm{GHz}$	362 A	$\$ 325-\$ 385$

Frequency meters, attenuators, thermistor mounts

See frequency meters on page 26, attenuators on page 33 , and thermistor mounts on page 37.

(P) POWER MEASUREMENT

Power meters

Microwave power meter, with extremely low drift, uses self-balancing bridges and thermistor mounts, one set to sense and measure rf power, the other to correct the meter for ambient temperature changes. Just one zero set for all ranges. Thermistor mounts for use with the meter cover 10 MHz to 40 GHz , each mount marked with Calibration Factor and Effective Efficiency on nameplate. Efficiency switch normalizes meter reading to account for thermistor mount calibration factor. Taut-band, individually calibrated meter with mw and dbm scales. Model 431C.

431C Power Meter

Instrument	Power range (full scale)	Instrument accuracy	Frequency range	Model	Price
Microwave power meter reads directly in mw and dbm, instantaneous readings; uses external bolometer element: meter furnishes bolometer bias.	$0.1 \mathrm{mw}-10 \mathrm{mw}$	within $\pm 5 \%$ of full scale	bolometer mounts to 40 GHz	430 C	$\$ 275^{*}$
Power meter (temperature- compensated as described with photo), offers Calibration Factor control, recorder output, provides leveling capabilities. $* *$	$10 \mu \mathrm{~W}-10 \mathrm{mw}$	$\pm 1 \%+20^{\circ}$ to $+35^{\circ} \mathrm{C} ;$ $\pm 2.5 \% 0^{\circ}$ to $+55^{\circ} \mathrm{C}$	10 MHz to 40 GHz with mounts described below	431 C	$\$ 475$

[^1]| Instrument | Power range
 (full scale) | Power accuracy | Frequency range | Model |
| :--- | :---: | :---: | :---: | :---: |
| Price
 Calorimetric power meter with
 just two controls-meter range
 switch and zero set. Stable,
 less than 5 sec. for full-scale
 deflection, low input swr; reads
 direct in watts and dbw. | $10 \mathrm{mw}-10 \mathrm{w}$ | within $\pm 5 \%$ of full scale | dc to 12.4 GHz | 434 A |

*Rack mount $\$ 15$ less

Thermistor mounts

Instrument	Power range	SWR	Frequency range	Model	Price
Coaxial mount, fixed-tuned, low zerodrift, protected from burnout; swr > 1.5 full frequency range.	$\begin{aligned} & 0.01-10 \mathrm{mw} \\ & \text { (with } 430 \mathrm{C} \\ & \text { Power Meter) } \end{aligned}$	<1.5 over full range	$10 \mathrm{MHz}-10 \mathrm{GHz}$	477B	\$ 75
Waveguide mounts, S- to R-Bands, no tuning required; 9 models.	10 mw max. (with 430C Power Meter)	1.5 (G-through P-Bands)	$2.6-40 \mathrm{GHz}$	487	\$75.\$275
Temperature-compensated coax mount for 50 -ohm systems; no tuning required; Calibration Factor and Effective Efficiency data furnished.	$\begin{aligned} & 1 \mu \mathrm{w}-10 \mathrm{mw} \\ & \text { (with } 431 \\ & \text { Power Meter) } \end{aligned}$	1.6 maximum	$10 \mathrm{MHz}-10 \mathrm{GHz}$	478A	\$155
Waveguide mounts, no tuning required, S - to R-Bands, 9 models; Calibration Factor, Effective Efficiency engraved on nameplate.	$\begin{aligned} & 1 \mu \mathrm{w}-10 \mathrm{mw} \\ & \text { (with } 431 \\ & \text { Power Meter) } \end{aligned}$	1.5 (G-through P-Bands)	$2.6-40 \mathrm{GHz}$	486A	\$145-\$375

Power meter calibrator

You can verify full-scale calibration and check meter tracking on the Hewlett-Packard 431 Series power meters, measure operating resistance of a thermistor mount, or use with a precision voltmeter to measure rf power by a dc substitution method. Constant current
supply is provided for the thermistor mount which permits dc calibration of power meter and mount within $\pm 0.16 \%$. Calibration range $0.01-10 \mathrm{mw}$ full scale, dc substitution range $1 \mu \mathrm{~W}-10 \mathrm{mw}$. Price of 8402B, \$475.

Peak power calibrator

Convenient for reading rf peak power of pulse directly. Readings virtually independent of duty cycle, can be standardized against external bolometer or calori-
meter. $50-2000 \mathrm{MHz}, 200 \mathrm{mw}$ peak f.s., accurate $\pm 1.5 \mathrm{db}$; rf pulse $>0.25 \mu \mathrm{sec}$ width, 1.5 MHz max. rep rate. $8900 \mathrm{~B}, \$ 485$.

MICROWAVE NOISE FIGURE MEASUREMENT

Noise figure meters

Noise figure measurement in microwave receivers is made possible with Hewlett-Packard noise figure meters and noise sources covering IF through waveguide ranges. The 340 B and 342A give continuous display of noise figure automatically. They also may
be operated manually. Four noise sources are available for use with the meters. They measure noise figure 0 to 15 db with a 5.2 db noise source and 3 to 30 db with a 15.2 db source, indication to infinity. Accuracy is $\pm 1 / 2 \mathrm{db}, 0.15 \mathrm{db}$ (noise diode scale) and

MICROWAVE NOISE FIGURE MEASUREMENT
continued
(gas tube scale) $\pm 1 / 2 \mathrm{db}, 10-25 \mathrm{db}$, and $\pm 1 \mathrm{db}, 3-10$ db. Frequency coverage: $340 \mathrm{~B}, 30$ or 60 MHz , special frequencies, $10-62 \mathrm{MHz}$ available on order; 342A, 30,
$60,70,105$ and 200 MHz , special frequencies, 38 200 MHz available on order. Price: $342 \mathrm{~A}, \$ 815 ; 340 \mathrm{~B}$, $\$ 715$, rack mount models $\$ 15$ less.

Noise sources

Instrument	Frequency range	Excess noise	Model	Price
IF noise source	30 or 60 MHz center	5.2 db into conjugate load	345B	\$125
VHF noise source	$10-600 \mathrm{MHz}$	$5.2 \mathrm{db} \pm 0.1 \mathrm{db}, 10-200 \mathrm{MHz} ; 5.2 \mathrm{db} \pm 0.25 \mathrm{db}$, $200-400 \mathrm{MHz} ; 5.2 \mathrm{db} \pm 0.35 \mathrm{db}, 400-600 \mathrm{MHz}$	343A	\$100
UHF noise source	$400-4000 \mathrm{MHz}$	$\begin{aligned} & 15.6 \pm 0.6 \mathrm{db}, 400-1000 \mathrm{MHz} ; 15.7 \pm 0.5 \mathrm{db} \\ & 1000-4000 \mathrm{MHz} \end{aligned}$	349A	\$325
Waveguide noise sources	$2.6-3.95 \mathrm{GHz}$	$15.1 \pm 0.5 \mathrm{db}$	S347A	\$390
	$3.95-5.85 \mathrm{GHz}$	$15.2 \pm 0.5 \mathrm{db}$	G347A	\$310
	$5.3-8.2 \mathrm{GHz}$	$15.2 \pm 0.5 \mathrm{db}$	J347A	\$300
	$7.05-10.0 \mathrm{GHz}$	$15.7 \pm 0.5 \mathrm{db}$	H347A	\$275
	$8.2-12.4 \mathrm{GHz}$	$15.9 \pm 0.5 \mathrm{db}$	X 347 A	\$225
	$12.4-18.0 \mathrm{GHz}$	$16.0 \pm 0.5 \mathrm{db}$	P347A	\$275

$X-Y$ recorders

Hewlett-Packard $x-y$ recorders are offered in a variety of chart sizes. Most offer a choice of bench or rack mounting, English or metric scaling, 115- or 230 voltoperation and 50 or 60 Hertz power requirement. Standard features include exclusive Autogrip* electric paper holddown; compact, modular solid-state design; zener-controlled electronic reference, electronic time

base. Options include electric pen lift, retransmitting potentiometers, rear input and others.

Plotting area	Instrument	Input range	Model	Price
7×10 inches $(180 \times 250 \mathrm{~mm})$	Bench and rack recorder in one, portable, time base on x-axis, solid state, Autogrip.	$\begin{aligned} & 0.5 \mathrm{mV}-50 \mathrm{~V} / \mathrm{in} \\ & (0.2 \mathrm{mV}-20 \mathrm{~V} / \mathrm{cm}) \end{aligned}$	135	\$1650
	High-impedance version of 135 above, with $1 \mathrm{M} \Omega$ at null.		135A	\$1650
	Two-pen recorder for plotting two curves at once, time base on x-axis, solid state, Autogrip.	$\begin{aligned} & 0.5 \mathrm{mV}-50 \mathrm{~V} / \mathrm{in} \\ & (0.2 \mathrm{mV}-20 \mathrm{~V} / \mathrm{cm}) \end{aligned}$	136A	\$2650
	High-sensitivity recorder, $1 \mathrm{M} s$ input impedance, high CMR, time base (either axis), solid state, Autogrip.	$\begin{aligned} & 0.1 \mathrm{mV}-20 \mathrm{~V} / \mathrm{in} \\ & (0.05 \mathrm{mV}-10 \mathrm{~V} / \mathrm{cm}) \end{aligned}$	7030A	\$1895
	Economy recorder, guarded input, solid state, Autogrip.	$\begin{aligned} & 1 \mathrm{mV}-10 \mathrm{~V} / \mathrm{in} \\ & (0.4 \mathrm{mV}-4 \mathrm{~V} / \mathrm{cm}) \end{aligned}$	7035A	\$795

[^2]| Plotting area | Instrument | Input range | Model | Price |
| :---: | :---: | :---: | :---: | :---: |
| 10×15 inches $(250 \times 380 \mathrm{~mm})$ | Versatile solid-state recorder, with time base on x-axis, Autogrip. | $\begin{aligned} & 0.5 \mathrm{mV}-50 \mathrm{~V} / \mathrm{in} \\ & (0.2 \mathrm{mV}-20 \mathrm{~V} / \mathrm{cm}) \end{aligned}$ | 2D-2 | \$1950 |
| | High-impedance version of 2D-2 above, with 1 M ¢ at null. | | 2D-2A | \$1950 |
| | Similar to 2D-2 above, with capability of accepting 100 V computer reference. | | 2D-3 | \$2050 |
| | Economy recorder, solid state, floating inputs. | $\begin{aligned} & 0.5 \mathrm{mV}-10 \mathrm{~V} / \mathrm{in} \\ & (0.2 \mathrm{mV}-5 \mathrm{~V} / \mathrm{cm}) \end{aligned}$ | 2D-4 | \$1490 |
| | Two-pen recorder, with time base and Autogrip. | $\begin{aligned} & 0.5 \mathrm{mV}-50 \mathrm{~V} / \mathrm{in} \\ & (0.2 \mathrm{mV}-20 \mathrm{~V} / \mathrm{cm}) \end{aligned}$ | 2FA | \$3375 |
| | High-sensitivity recorder accepts both dc and ac inputs, constant $1 \mathrm{M}!$ input impedance, time base (either axis), guarded input, solid state, Autogrip. | $\begin{gathered} \text { DC: } 0.1 \mathrm{mV}-20 \mathrm{VV} / \mathrm{in} \\ (0.05 \mathrm{mV}-10 \mathrm{~V} / \mathrm{cm}) \\ \mathrm{AC:} 5 \mathrm{mV}-20 \mathrm{~V} / \mathrm{n} \\ (2.5 \mathrm{mV} .10 \mathrm{~V} / \mathrm{cm}) \end{gathered}$ | 7000A | \$2495 |
| | Same as 7000A above, but without ac input. | | 7001A | \$2175 |
| | Automatic data plotting system; null detector and character printer built in, solid state, floating inputs. | $\begin{aligned} & 0.5 \mathrm{mV} \cdot 10 \mathrm{~V} / \mathrm{in} \\ & (0.2 \mathrm{mV}-5 \mathrm{~V} / \mathrm{cm}) \end{aligned}$ | 7590 C | \$1985 |
| 30×30 inches ($762 \times 762 \mathrm{~mm}$) | Large-display recorder for table or wall mount, floating inputs, zener reference. | 1 mV -10 V/in | 7 | \$3950 |

Recorder accessories

Instrument	Use for	Model	Price
Line follower system, photoelectrically follows lines made with pencil or pigment-type ink; adjustable readout delay for transport delay simulation; adjustable error alarm, consists of tracking unit and separate control box and tracking head.	2D Series Recorders	7500A	\$1595
	680 Series Strip-Chart Recorders	7501A	\$1650
	7100B Series Recorders	7502A	\$1650
Line follower, photoelectric unit replaces recorder pen, optically follows pencil or pigment-type ink lines; factory installation required.	2D and 7000A Series Recorders	F-3B	\$795
Waveform translator, converts high-speed repetitive waveforms on scope to $x-y$ plots; uses sampling technique, supplies dc to recorder.	All hp/Moseley $x-y$ recorders	101	\$675
Roll chart adapters to convert $x-y$ recorder to basic strip-chart recording capabilities; 17008A features automatic pushbutton full-frame advance.	2D, 7000A Series	17006A	\$ 85
		17007A	\$575
		17008A	\$575
Logarithmic converters for dc or ac signals ($20 \mathrm{~Hz}-100 \mathrm{kHz}$); dc $0.00316-316 \mathrm{v}$, ac $0.001-100 \mathrm{v}, 60 \mathrm{db}$ dynamic range.	one-channel conversion	7561A	\$595
	dual-channel conversion	7560A	\$975
Character printers replace the pen on most $x-y$ recorders to identify points or curves when plotting families of digital data; plots to 360 characters $/ \mathrm{min}$; 6 characters furnished, 10 available.	Phone plug input	17009A	\$ 95
	Miniplug input *	17009B	\$ 95
Keyboard permits plotting of tabular data in point-graph form.	2D and 7000A Series Recorders	40D	\$975
Null detector controls plotting of continuous, discontinuous, or point function data.	2D and 7000A Series Recorders	G-2	\$265

Transducers

A wide variety of transducers for converting physical phenomena to electrical signals are available from Hewlett-Packard. They are capable of converting linear
displacement, velocity and acceleration, gas and fluid pressures and low forces. Ask your Hewlett-Packard field engineer for details.

Event recorders

Produce sharp, clear traces of events as short as 1.3 msec on dry, electrosensitive charts; pulsed writing, solid-state plug-in writing cards available for fixed or variable logic levels, low-level signals, etc.; meet
rugged MIL RFI specs. Event recorder Model 361, 30 channels, from $\$ 2250$, with three writing controls (eight types available); Model 360, 120 channels (without writing control) $\$ 3900$.

RECORDING AND DATA ACQUISITION

continued

5700-Series Industrial Strip-chart Recorders

7702A Two-channel Recording System

Continuous-chart recorders (1 and 2 channels)

A broad selection of Hewlett-Packard continuous-chart recorders include strip-chart and oscillographic types for both ac and dc measurements. The recording
instrumentation group includes portable, mobile and rack types, models with fixed and plug-in signal conditioners, and models for specialized applications.

Plotting width per channel	Number of channels	Instrument	Chart speeds	Model	Price
32 mm	1	Portable dc- 100 Hz recorder, 10 mV $10 \mathrm{~V} / \mathrm{div}(\mathrm{div}=1 / 32$ inch $)$.	$5,50 \mathrm{~mm} / \mathrm{sec}$	299	\$800
	1	Portable dc- 100 Hz recorder with built-in excitation source for carrier transducer inputs, $10 \mu \mathrm{~V} / \mathrm{div}$ (div $=1 / 32$ inch).	$5,50 \mathrm{~mm} / \mathrm{sec}$	301	\$850
50 mm	2	Portable dc- 125 Hz general-purpose recorder, $0.5 \mathrm{mV}-1 \mathrm{~V} / \mathrm{mm}$.	$1,5,20,100 \mathrm{~mm} / \mathrm{sec}$	320	\$1650
	2	Portable dc- 125 Hz recorder with built-in excitation source for carrier transducer inputs, $10 \mu \mathrm{~V} / \mathrm{mm}$.	$1,5,20,100 \mathrm{~mm} / \mathrm{sec}$	321	\$1650
	2	Portable general-purpose dc- 125 Hz recorder, 10 mV - $10 \mathrm{~V} / \mathrm{mm}$.	$1,5,20,100 \mathrm{~mm} / \mathrm{sec}$	322	\$1395
	2	Plug-in dc-125 Hz recording system, 0.1 V / mm, uses 8800 Series plug-in preamps (see page 41).	$1,5,20,100 \mathrm{~mm} / \mathrm{sec}$	7702A	\$1675*
	2	Plug-in dc-125 Hz recording system, 0.1 V / mm, uses 350 Series plug-in preamps (see page 42).	$1,5,20,100 \mathrm{~mm} / \mathrm{sec}$	- 7712A	\$1770*
100 mm	1	High-resolution dc- 30 Hz plug-in oscillographic recorder with case, $0.5 \mu \mathrm{~V}$-250 V / mm, uses 8800 Series plug-in preamps (see page 41).	$\begin{aligned} & 0.5,2.5,10,50 \\ & \mathrm{~mm} / \mathrm{sec} \end{aligned}$	7701A	\$1325*
$\begin{aligned} & 5 \text { inches } \\ & (127 \mathrm{~mm}) \end{aligned}$	1	General-purpose dc strip-chart recorder, $5 \mathrm{mV}-100 \mathrm{~V}$ full span.	$\begin{aligned} & 1,2,4,8^{\prime \prime} / \mathrm{min} \\ & 1,2,4,8^{n} / \mathrm{hr} \end{aligned}$	680	\$750
6 inches (152 mm)	2	Industrial dc strip-chart recorder; select one of ten spans, $1 \mathrm{mV}-100 \mathrm{~V}$ f.s.; high reliability.	Select one of 21 speeds, $0.5^{\prime \prime} / \mathrm{hr}$ to $10^{\prime \prime} / \mathrm{min}$	5700A	\$1325
	1	Same as 5700A above, except one channel.	Same as 5700A above	5701A	\$825
10 inches (254 mm)	2	Solid-state dc strip-chart recorder with plug-in span versatility.	12 speeds: $1^{\prime \prime} / \mathrm{hr}$ to $2^{\prime \prime} / \mathrm{sec}$	7100 B	\$1300*
	1	Same as 71008 above, except one channel.	Same as 7100B above	7101B	\$1140*
		Plug-in for 7100B/7101B; 5 mV - 100 V , full span.		17500A	\$250
		Plug-in for 7100B/7101B; $1 \mathrm{mV}-100 \mathrm{~V}$, full span.		17501A	\$350

Plotting width per channel	Number of channels	Instrument	Chart speeds	Model	Price
10 inches (254 mm)		Plug-in for 7100B/7101B; single selectable span to match thermocouples.		17502A	\$250
	2	Single-span, single-speed dc strip-chart recorder; select one of seven spans 1 mV $1 \mathrm{~V} . \mathrm{s}$.	Select one of nine speeds, $1^{\prime \prime} / \mathrm{hr}$ to $4^{\prime \prime} / \mathrm{min}$	7102A	\$1100
	1	Same as 7102A above, except one channel.	Same as 7102A above	7103A	\$875
$\begin{aligned} & 11 \text { inches } \\ & (279 \mathrm{~mm}) \end{aligned}$	2	Industrial dc strip-chart recorder; select one of ten spans, $1 \mathrm{mV}-100 \mathrm{~V}$ f.s.; high reliability.	Select one of 21 speeds, $0.5^{\prime \prime} / \mathrm{hr}$ to $10^{\prime \prime} / \mathrm{min}$	5702A	\$1895
	1	Same as 5702A above, except one channel.	Same as 5702A above	5703A	\$995

*Price, plus appropriate plug-in units

Thermal recording systems

(4, 6, 8 channels)

Inkless thermal systems use basically the same recorder, varying in four versions according to the electronics used. In common, they offer 9 chart speeds, $0.25-100 \mathrm{~mm} / \mathrm{sec}$, dc- 150 Hz response within 3 db . The systems are designated as the 7700 Series.

$50 \mathrm{mV}, 8$-channel system

This Hewlett-Packard system offers eight channels true rectilinear, ideal for telemetry and computer outputs; versatile, simple, reliable; 50 mV - $250 \mathrm{~V} /$ div. sensitivity; solid state. Just turn on the system, calibrate with an internal source, set input range, position stylii and select chart speed; ideal for long, unattended recording. A complete 7709A System is packaged in single mobile cabinet, $\$ 5030$. Rack mounting Option 01, $\$ 4730$, requires only $241 / 2$ vertical inches of rack space.

7708A Thermal Recording System

Solid-state plug-in systems

Basic systems (and plug-in solid-state preamplifiers)		Model	Price
4-channel solid-state system, interchangeable plug-in preamplifiers, horizontal pull-out recorder for table top marking, sensitivity $1 \mu \mathrm{~V} /$ div- 250 V f.s., 9 mechanically changed speeds.		7704A	\$4020*
6-channel solid-state system, interchangeable plug-in preamplifiers, flush front recorder with nine electrically controlled pushbutton speeds.		7706A	\$4820*
8-channel solid-state system, same as 7706A above.		7708A	\$5495*
	Low-gain dc plug-in preamp with calibrated zero suppression, for use with solid-state systems; $5-5000 \mathrm{mV}$ /div sensitivity, 500 K input Z, CMR 48 db min .	8801A	\$ 275
	Medium-gain dc plug-in preamp, similar to 8801 A above, $1-1000 \mathrm{mV} /$ div sensitivity, 180 K input Z, CMR 48 db min .	8802A	\$ 325
	High-gain dc plug-in preamp, similar to 8801 A above, $1 \mu \mathrm{~V}$ - $5000 \mathrm{mV} /$ div sensitivity, 1 Meg input Z. CMR 160 db at dc.	8803A	\$ 600
	Carrier plug-in preamp, similar to 8801 A above, $10 \mu \mathrm{~V} /$ div sensitivity, 100 K input Z , CMR 40 db min.	8805A	\$ 400
	Phase-sensitive demodulator plug-in preamp, similar to 8801 A above, $0.5 \mathrm{mV} /$ div sensitivity, 1 Meg input Z, CMR infinite; calibrated phase shifter inserts $60 \mathrm{~Hz}(8806-02 \mathrm{~A}), 400 \mathrm{~Hz}$ (8806-03A), 5 kHz (8806-04A), $\$ 75$ each.	8806A	$\begin{aligned} & \$ 475 \\ & \text { (plus } \\ & \text { inserts) } \end{aligned}$
	AC-DC converter, similar to 8801 A above, $1 \mathrm{mV}-20 \mathrm{mV} / \mathrm{db}, 1$ Meg input $Z, C M R 40 \mathrm{db} \mathrm{min}$. ($50 \mathrm{~Hz}-100 \mathrm{kHz}$).	8807A	\$ 700
	Special-purpose dc plug-in preamp, adjustable input 20 mV - $50 \mathrm{mV} / \mathrm{div}$, switch-selected input Z 1500 ת or higher than 100 K ; CMR 50,000:1 at dc.	8809A	\$ 75

*Plus price of preamplifiers

RECORDING AND DATA ACQUISITION

continued

Vacuum-tube plug-in amplifier systems

Basic systems (and plug-in vacuum-tube preamplifiers)	Model	Price
4-channel economical, high-performance system with horizontal pull-out recorder for table-top chart marking, nine mechanically changed speeds, plug-in preamplifiers for each channel.	7714 A	\$3970*
6-channel version; uses flush-front, vertical chart plane recorder; nine electrically controlled pushbutton speeds.	7716 A	\$5325*
8-channel version of 7716A above.	7718A	\$6350*
DC plug-in preamp, dc coupling; $1 \mathrm{mv} / \mathrm{div}$ sensitivity, 5 Meg input Z, gain 100 , dc- 100 Hz .	$350-1000 \mathrm{~B}$	\$325
Carrier plug-in preamp, provides excitation ($2400 \mathrm{~Hz}, 4.5-5 \mathrm{~V}$), accepts outputs; $100{ }_{\mu} \mathrm{V}$ input provides 1 V ; sensitivity reduction by factors of $2,5,10,20,50,100,200$.	350-1100C	\$425
Phase-sensitive demodulator plug-in preamp, dc out proportional to in-phase component of an ac signal; 4 mV (in-phase) produces 1 V dc at output.	350-1200E	\$400
DC coupling plug-in preamp, $5 \mathrm{mV} / \mathrm{div}$.	350-1300C	\$250
Logarithmic plug-in preamp accepts ac $100 \mathrm{mV}-100 \mathrm{~V} \mathrm{rms}$, dc -10 to +40 db .	350-1400A	\$475
High-gain plug-in preamp, accepts inserts for sensitivity $20 \mu \mathrm{~V}$ in for 1 V out; max. gain 50,000 ; inserts for plug-in (ie, 350-2B dc with zero suppression, \$165; 350-4A strain gage, \$130).	$350-1500$ A	$\begin{gathered} \$ 525 \\ \text { (plus } \\ \text { inserts) } \end{gathered}$
Frequency meter plug-in preamp, measures frequency $30 \mathrm{~Hz}-50 \mathrm{kHz}$, providing dc output for recording.	350-2800A	\$415

*Plus price of preamplifiers

Identical-channel systems

Basic systems (and amplifiers)	Model	Price
6-channel economy system; records variables $0-150 \mathrm{~Hz}$; accepts one of four 6-channel solidstate amplifiers below; sensitivities $10 \mu \mathrm{~V}-500 \mathrm{mV} / \mathrm{div}$; useful for a variety of applications.	7726A	\$3125*
Same as 7726A above, except 8 channels and uses 8 -channel amplifiers below.	7728A	\$3425*
High-gain dc amplifiers for identical-channel systems; $10-2000 \mu \mathrm{~V} / \mathrm{div}, 100 \mathrm{~K}$ input Z ; CMR 140 db min., dc, 120 db min . at 60 Hz.	$\begin{gathered} 958-1500-01 \\ (6 \text { channel }) \end{gathered}$	\$3600
	$\begin{aligned} & 958-1500 \\ & (8 \text { channel }) \end{aligned}$	\$3800
Medium-gain dc amplifiers for identical-channel systems; 0.5 mV -20 V/div; 0.5 Meg input Z; CMR same as above.	$\begin{aligned} & 958-3400-01 \\ & \text { (6 channel) } \end{aligned}$	\$3330
	$\begin{aligned} & 958-3400 \\ & \text { (8 channel) } \end{aligned}$	\$3500
Medium-low-gain dc amplifiers for identical-channel systems; 10 mV - $10 \mathrm{~V} / \mathrm{div} ; 5 \mathrm{Meg}$ (balanced to ground) each side; CMR 34 db on most sensitive range.	$\begin{gathered} 958-2900-01 \\ (6 \text { channel) } \end{gathered}$	\$2290
	$\begin{aligned} & 958-2900 \\ & \text { (8 channel) } \end{aligned}$	\$2500
Low-gain dc amplifiers for identical-channel systems; 0.05-2 V/div; 550 K (balanced to ground); CMR 40 db typical.	$\begin{gathered} 958-3600-01 \\ \text { (6 channel) } \end{gathered}$	\$2340
	$\begin{aligned} & 958-3600 \\ & (8 \text { channel) } \end{aligned}$	\$2500

*Plus price of amplifier unit for 6 - or 8 -channel operation

Optical recording systems (to 25 channels)

Completely integrated amplifier-galvanometerrecorder system, to 25 channels for directly connecting 0.5 kHz signals rear or front, recording signals $2.5 \mathrm{mV} / \mathrm{in}-625 \mathrm{mV} / \mathrm{in}$. Prices for 4500 Series 8 channel systems start at $\$ 4800$, plus amplifiers. Three

8 -channel amplifier choices (6 -channel also available) include $625 \mathrm{mV} /$ in galvanometer driver 658-2000, $\$ 2200 ; 50 \mathrm{mV} /$ in low-gain 658-2900, \$2895; 2.5 $\mathrm{mV} /$ in medium gain $658-3400, \$ 3780$.

Magnetic tape recording systems (7, 14 channels)

Unique, mechanically simple Hewlett-Packard tape transport assures reliability, long life. These low-cost recording systems have high quality performance with less adjustment and maintenance than comparable systems. Six electrically switchable speeds, plug-in record and reproduce electronics for complete flexibility at minimum cost.

3950 Magnetic
Tape Recording System

Systems	Bandwidth	Channels	Model	Price
High-performance systems, with improved flutter, distortion specs; six speeds, $1-7 / 8^{\prime \prime}$ to $60^{\prime \prime} / \mathrm{sec}$ with no capstan change; IRIG compatibility; solid-state plug-in FM, direct, pulse record/reproduce electronics. Accessories include voice channel amp, tape loop adapter, remote control unit.	$50 \mathrm{~Hz}-100 \mathrm{kHz}$	7	3907B	\$6185*
		14	3914B	\$8415*
Similar to 3907B, 3914B systems (above), except for bandwidth and price.	$50 \mathrm{~Hz}-250 \mathrm{kHz}$	7	3917B	\$6935*
		14	3924B	\$9915*
Use similar tape transport as above systems, provides wider bandwidths for direct record telemetry, similar applications; easy to use, IRIG compatibility, minimum adjustments; push-bar equalizers simplify speed changes.	$400 \mathrm{~Hz}-1.5 \mathrm{MHz}$	up to 14	3950. Series	Prices on request

*Basic system price; add prices of amplifier and speed equalization plug-ins for each active channel; approx. $\$ 215$ per channel (direct), $\$ 245$ per channel (FM)

Digital data acquisition systems

Hewlett-Packard digital data acquisition systems are standard models, offering fast delivery, the economy of standardization, proved performance and complete, reliable specifications. Any system may be selected from a data sheet. Each series of systems is built around a particular measuring device, and the models differ in type of input scanner and recorded output,

2010C Data Acquisition System
which ranges from printed paper tape to magnetic tape. The following charts outline the basic series of systems and the models in each series.

2010 Series Data Acquisition Systems*

Voltage ranges	Frequency range	Display	Scanner input	Effective CMR	Measurement speed	Output	Model	Price
$100 \mathrm{mV}-1000 \mathrm{~V}$ full scale in five ranges; to $\pm 300 \%$ overranging: optional 10 mV full scale	$5 \mathrm{~Hz}-300$ kHz ; sample period 0.01 , 0.1 or 1 second	6 digits of data, range, function (polarity), channel number are all included in readout and recording.	Stepping switch scanner; to 25 3 -wire inputs, to 100 channels with slaves; programming permits measurement of mixed types, levels of signals.	105 db	5 channels/sec	Printed paper tape	2010A	\$8310
					10 channels/sec	Perforated tape	2010B	\$10,225
					1 channel/sec	Punched card (IBM 526)	2010E	\$9425
					10 channels/sec	Digital magnetic tape	2 OLOH	\$16,275
			Guarded crossbar scanner; to 200 guarded 3 -wire inputs; to 600 1-wire inputs; can be programmed with accessory pinboard or punched tape programmer.	130 db	5 channels/sec	Printed paper tape	2010C	\$10,660
					10 channels/sec	Perforated tape	2010D	\$12,500
					1 channel/sec	Punched card (IBM 526)	2010F	\$11,700
					10 channels/sec	Digital magnetic tape	2010J	\$18,550

*Measuring instrument 2401C Integrating Digital Voltmeter (see page 3)

RECORDING AND
DATA ACQUISITION
continued

2013 Series Data Acquisition Systems*

Voltage ranges	Display	Scanner input	Measurement speed	Output	Model	Price
$\begin{aligned} & 10,100,1000 \\ & \text { V full scale } \end{aligned}$	4 digits of data, range, polarity, channel number are all included in readout and recording.	25 2-wire or 50 1-wire single-ended inputs; upper limit scan selection.	100 channels/min	Printed paper tape	2013A	\$4495
			60 channels/min	Perforated tape	2013B	\$5410
			40 channels/min	Typewritten sheet	2013C	\$5645
			40 channels/min	Punched card (IBM 024, 026)	2013D	\$4420
		To 253 -wire sources; to 100 channels with slave scanners; single-ended inputs, channels individually selected.	100 channels/min	Printed paper tape	2013J	\$4850
			60 channels/min	Perforated tape	2013K	\$5765
			40 channels/min	Typewritten sheet	2013L	\$6000
			40 channels/min	$\begin{aligned} & \text { Punched card } \\ & \text { (IBM 024, 026) } \\ & \hline \end{aligned}$	2013M	\$4775

*Measuring instrument 3440A Digital Voltmeter (see page 3)

2015 Series Data Acquisition Systems*

Voltage ranges	Display	Scanner input	Measurement speed	Output	Model	Price
$\begin{aligned} & \text { 1, 10, } 100 \\ & 1000 \text { v fuli scale } \end{aligned}$	6 digits of data, range, polarity, channel number are all indicated in readout and recording.	Stepping switch scanner; to 253 -wire inputs; to 100 channels with slaves; programming permits measurement of mixed types and levels of signals.	5 channels/sec	Printed paper tape	2015A	\$8160
			7 channels/sec	Perforated paper tape	2015B	\$10,075
			1 channel/sec	Punched card (IBM 526)	2015E	\$9275
			7 channels/sec	Digital magnetic tape	2015H	\$16,125
		To 200 guarded 3 -wire inputs, 1006 -wire, 300 2-wire, 6001 -wire inputs; can be programmed with accessory pinboard or punched tape programmer	5 channels/sec	Printed paper tape	2015C	\$10,510
			9 channels/sec	Perforated paper tape	2015D	\$12,350
			1 channel/sec	Punched card (IBM 526)	2015 F	\$11,550
			12 channels/sec	Digital magnetic tape	2015J	\$18,400

*Measuring instrument 3460A Digital Voltmeter (see page 3)

2017 Series Data Acquisition Systems*

Voltage ranges	Frequency ranges	Display	Scanner input	Output	Model	Price
$100 \mathrm{mv}-1000 \mathrm{~V}$ f.s.; $\pm 300 \%$ overranging: 0.01% stability on highest ranges. Data linearizer permits readout of thermocouples, strain gage bridges and other transducers directly in engineering units.	$10 \mathrm{~Hz}-300$ kHz; linearizer programs sample period.	6 digits of data, measurement units (i.e. rpm, ${ }^{\circ} \mathrm{C}$), range, polarity, channel number are all included in readout and recording.	Stepping switch scanner; to 253 -wire inputs to 100 channels with slaves; programming permits measurement of mixed types, levels of signals. 105 db effective CMR.	Printed paper tape	2017A	\$11,990
				Perforated tape	2017B	\$13,785
				Punched card (IBM 526)	2017E	\$12,940
				Digital magnetic tape	2017H	\$19,790
			Guarded crossbar scanner; to 2003 -wire inputs; to 6001 -wire inputs; can be programmed with accessory pinboard or punched tape programmer.	Printed paper tape	2017C	\$13,915
				Perforated tape	2017D	\$15,690
				-Punched card (IBM 526)	2017F	\$14,790
				Digital magnetic tape	2017J	\$21,640

*Measuring instrument 2401C Integrating Digital Voltmeter with 2417A Data Linearizer (see pages 3, 45)

Digital data plotting systems

These Hewlett-Packard systems produce easy-to-read graphical plots from digital data stored on punched cards, perforated tape or magnetic tape. A keyboard is included for manual data entry. The systems offer four-digit resolution on both x and y inputs; plotting accuracy is better than $\pm 0.15 \%$ of full scale.

2031C Digital Data Plotting System

Type of input	Plotting area	Accessories	Model	Price
Punched card	$10^{\prime \prime} \times 15^{\prime \prime}$ on $11^{\prime \prime} \times 17^{\prime \prime}$ paper Optional roll chart	Digital line segment generator permits interpolation between points to produce smooth curves; editor permits direct plotting of data recorded by data acquisition systems	2031A	\$9490
Punched tape			2031B	\$8500
Magnetic tape			2031C	\$13,815

Digital system elements...input scanners and programmers

Instrument		
Stepping switch scanner scans up to 501 -wire or 25 2-wire inputs, upper limit selectable at front panel; channel being measured indicated by in-line readout and BCD output.	2900B	\$1420
Stepping switch scanner scans 253 -wire inputs, programs all functions of associated system; pushbutton selection of channel to be measured; pinboard inside scanner programs measurement functions and delay on channel-by-channel basis; expandable in 25 -channel increments to 100 channels with slave scanners.	2901A	$\begin{array}{r} \$ 2375 \\ \text { (slaves } \\ \$ 1975 \text {) } \end{array}$
Guarded crossbar scanner for rejection of common mode noise; scans 2003 -wire, 6001 -wire, 300 2-wire, 1006 -wire inputs; lower, upper scan limits selectable at front panel, with random access to any channel; monitored channel indicated with in-line display and BCD output.	2911	\$4650
Programmer for use with 2911 Scanner (above); permits mixing types, levels of inputs and skipping individual random channels.	2911C	\$3425
Punched tape programmer programs digital voltmeter and signal conditioners; directs scanner to specific channels or groups of channels; controls data recording; optional tape search permits system control in response to comparison results or time from digital clock.	2560A	\$3380
Digital scanner sequentially scans and transmits data from 3 digital sources (optionally to 6) such as counters, scalers, DVM's to single recording device such as paper tape punch, digital magnetic tape recorder.	2514A	\$2500

Digital system elements...signal conditioners

Instrument	Model	Price
AC-to-DC converter produces $0-1 \mathrm{Vdc}$ output proportional to average value in input ac $100 \mu \mathrm{~V}-300 \mathrm{~V}$, $50 \mathrm{~Hz}-500 \mathrm{kHz}$; floating input, overrange capability.	457A	\$ 450
AC/ohms-to-DC converter converts ac ($0.1-1000 \mathrm{~V}$ f.s., $50 \mathrm{~Hz}-100 \mathrm{kHz}$) and ohms ($100 \mathrm{ohms}-10 \mathrm{Meg}$) to dc for measurement with 2401C or 3460A Digital Voltmeter; preserves DVM guarding; programmable.	2410B	\$2250
Data linearizer, used with 2401C Integrating Digital Voltmeter, compensates for transducer "live" zero, scale factor and nonlinearity; provides readout directly in appropriate physical units: ${ }^{\circ} \mathrm{C}$, psi, $\mu \mathrm{in} / \mathrm{in}, \mathrm{gpm}$, etc; programmable.	2417A	\$2650
Guarded data amplifier (see Amplifiers, page 20)	2411A	\$1200

RECORDING AND DATA ACQUISITION

Digital system elements . . . analog-to-digital converters

2212A V-to-F Converter

Instrument	Model	Price
Integrating digital voltmeter (see page 3).	2401 C	$\$ 3950$
Plug-in digital voltmeter (see page 3).	3440 A	$\$ 1160$
Integrating/potentiometric digital voltmeter (see page 3).	3460 A	$\$ 3600$
Voltage-to-frequency converter produces pulse train whose pulse rate is proportional to magnitude of dc input signal; 1, 10, 100, 1000 full scale Vdc in; (optional 0.1 v); 0-10,000 Hz out.	2210	$\$ 650$
Voltage-to-frequency converter (see above) 0-1 Vdc in (optional 0.1 or 100 Vdc), 0-10,000 Hz out, floating input; polarity sensed automatically.	2211 A	$\$ 1250$
Voltage-to-frequency converter same as 2211A above except 0-100,000 Hz out.	2211 B	$\$ 1250$
Voltage-to-frequency converter (see above) $10 \mathrm{mV}, 100 \mathrm{mV}, 1 \mathrm{Vdc}$ in; $100,000 \mathrm{~Hz}$ full scale out; bi-polar fast settling overload recovery; low input drift, 120 db CMR all ranges through differential circuits.	2212 A	$\$ 900$

Digital systems elements ...recorders, output couplers, auxiliary equipment

These Hewlett-Packard devices permit recording data acquisition system outputs for later study or computer processing. They also are very useful for providing

562A Digital Recorder with 581 A D-A Converter installed
printed records, perforated tape, punched card, or digital magnetic tape recordings of measurements made with electronic counters.

Instrument	Model	Price
Digital recorder prints five 11-digit lines/sec (12-digit on special order); voltage staircase input, parallel entry, analog output.	560 A	$\$ 1400^{\star}$
Digital recorder similar to 560A above, requires 10-line decimal parallel entry input, one connection for each position of each print wheel.	561 B	$\$ 1150^{\star}$
Solid-state digital recorder prints as fast as 5 lines/sec, 11 digits per line (12 available); 2 msec data transfer time; BCD or 10-line codes (plug-in conversion).	562 A	$\$ 1085$ to $\$ 2100^{* *}$
Digital printer mechanism, fast 11-column device for use in custom systems; similar printing mechanism to 560, 561, 562.	565 A	$\$ 750$
Digital clock, designed to mount in lefthand panel openings with digital recorders/printers, provides bright display, can control external equipment; for use with 560A Recorder above.	570 A	$\$ 1050$
Digital clock, similar to 570A above, for use with 561B digital recorder.	571 B	$\$ 1000$

\left.| Instrument | Model | Price |
| :--- | :---: | :---: |
| Digital clock, similar to 570A above, for use with 562A digital recorder. | HO3- | |
| 571B | | |$\right) \$ 1225$

*Rack mount \$15 less
**562A price depends on options

NUCLEAR MEASUREMENT

Scalers

Hewlett-Packard experience in electronic counters is brought to nuclear measurement with a variety of instruments that can operate with data systems. Instruments include scalers, a high-voltage power supply and scintillation detectors. The hp packaging format -modular cabinets for individual or rack-mount ap-plications-simplifies use with other instruments for complex systems. Versatility is increased by packag. ing scintillation detector and amplifier in one unit, complete scaler-timer in another and power supply in

a third. Premium selected Nal (T1) crystals and photomultiplier tubes and built-in amplifiers are used to obtain high performance, and provide sufficient gain and pulse shaping in scintillation detectors to drive a single-channel analyzer.

Instrument	Model	Price
Scaler-Timer accepts pulses from nuclear detectors to accumulate, display, record nuclear events; contains a three-mode single-channel pulse height analyzer with 0.01\% stability; 200 nsec pulse pair resolution, 6-digit in-line display, printer output, display storage, all solid state.	5201 L	$\$ 1950$
ldentical to 5201L above, except incorporates a simple discriminator in lieu of a pulse height analyzer; input sensitivity 100 mV.	5202 L	$\$ 1400$
Similar to 5202 L above, except does not incorporate a timer; ideal for use in multi-channel systems where it is slaved to another scaler-timer.	5203 L	$\$ 950$

Instrument	Model	Price
Supply designed to provide stable output voltage for requirements of scintillation spectrometry; $170-1615 \mathrm{~V}$ at 1 mA, vernier adjustment for fine control of metered output.	5551 A	$\$ 350$

Scintillation detectors

Instrument	Crystal size	Crystal type	Guaranteed resolution	Model	Price
High-performance Nal (T1) detectors for integral, differential gamma scintillation counting, gamma spectrometry; low drift, premium resolution, built-in preamp and low-gain amplifier; very low response to magnetic fields, 50 output impedance.	$2^{\prime \prime}$ diam $\times 2^{\prime \prime}$	Solid	8%	10601 A	$\$ 835$
	$3^{\prime \prime}$ diam $\times 3^{\prime \prime}$	Solid	8%	10602 A	$\$ 1475$
	$2^{\prime \prime}$ diam $\times 2^{\prime \prime}$	Well	10%	10611 A	$\$ 885$
	$3^{\prime \prime}$ diam $\times 3^{\prime \prime}$	Well	10%	10612 A	$\$ 1565$
	$2^{\prime \prime}$ diam $\times 2^{\prime \prime}$	Well	10%	10613 A	$\$ 885$
	$3^{\prime \prime}$ diam $\times 3^{\prime \prime}$	Well	10%	10614 A	$\$ 1565$

TEMPERATURE MEASUREMENT

Quartz thermometers

Measure temperature -80 to $+250^{\circ} \mathrm{C}$ with 0.0001° resolution with this quartz thermometer. Direct digital readout in degrees C or F, high-accuracy absolute or temperature difference measurements, outputs for recording on digital recorder, punched tape, cards, magnetic tape or strip-chart. Ideal for both lab work and automatic monitoring. The thermometer measures the frequency of a temperature-sensitive quartz oscillator, rather than the voltages or resistances associated with thermocouples or platinum-resistance devices. Thus, you get direct readings in degrees without bridge balancing, conversion charts, temperature references or computer processing. Temperature probes may be located to 1000 ft . from thermometer. The

Hewlett-Packard thermometer offers high performance under rugged environmental conditions. A wide variety of probes are available. Model 2801A, 2 sensor probes for 2 -point monitoring or difference readings, 0.0001° resolution, $\$ 3250$; Model 2800A, 1 probe, 0.1° resolution (optionally 0.01) $\$ 2250$.

Thermometer accessories and complementary equipment

Instrument	Model	Price
Oscillator amplifier enables extended signal cables to be used with quartz thermometers; 40 db gain compensates for signal loss in about 2000 feet of cable; one amplifier can be used to extend cable to 3000 feet, two amplifiers to 5000 feet.	2831 A	\$ 100
Quartz thermometer temperature sensor assembly for oceanographic applications, measures temperature in ocean depths in excess of 36,000 feet; provides signal to electronic counter for digital readout.	2832A	\$1950
Temperature sensor assembly, for use with quartz thermometer for measuring temperature at pressures to 10,000 psi and at distances up to 1 mile from thermometer itself, suitable for geological and industrial applications.	2833 A	\$ 750
Sensor selector for use with quartz thermometer, permits manual scanning of 10 sensors, with slave capability to permit measurement of up to 100 points; channel identification output provided for recording.	2840 A	\$ 650
Thermometer scanner, for automatic or manual measurement of up to 60 sensor inputs to quartz thermometer; single scan, continuous scan, and single channel monitor; upper and lower channel limit selection; channel number displayed, provided as BCD output.	2918 A	\$3750

HEWLETT-PACKARD SALES AND SERVICE OFFICES in the United States and Canada

1. Vancouver, B.C.

Hewlett-Packard (Canada) L.td. 2184 W. Broadway (604) 738-7520

TWX: 610-922-5059
2. Bellevue, Washington 98004 11656 N. E. 8th St. (206) 454-3971 TWX: 910-443-2303
3. Sacramento, California 95821 2591 Carisbad Ave. (916) 482-1463 TWX: 916-444-8683
4. Palo Alto, Callfornia 94303 1101 Embarcadero Rd. (415) 327.6500 TWX: 910-373-1280
5. North Hollywood, Calif. 91604 3939 Lankershim Blvd. (213) 877-1282 and $766-3811$ TWX: 910-499-2170
6. San Diego, California 92106 1055 Shafter Street (714) 223.8103 TWX: 714-276-4263
7. Salt Lake City, Utah 84115 1482 Major St. (801) 486-8166 TWX: 801-521-2604
8. Scottsdale, Arizona 85251 3009 No. Scottsdale Rd. (602) $945-7601$

TWX: 602-949-0111
9. Tucson, Arizona 85716 232 So. Tucson BIvd. (602) 623-2564 TWX: 602-792-2759
10. Englewood, Colorado 80110 7965 East Prentice (303) 771-3455 TWX: 303-771-3056
11. Albuquerque, N.M. 87108 6501 Lomas Blvd., N.E. (505) 255.5586 TWX: 910-989-1665
12. Las Cruces, N.M. 88001 114 S. Water Street (505) 526-2486 TWX: 910-983.0550
13. Oklahoma City, Oklahoma (405) $235-7062$
14. Dallas, Texas 75209 P. O. Box 7166, 3605 Inwood Rd. (214) $357-1881$ and $332-6657$ TWX: $910-861.4081$
15. Houston, Texas 77027 P. O. Box 22813 4242 Richmond Ave. (713) 667-2407 TWX: 713-571-1353
16. St. Paul, Minnesota 55114 2459 University Ave. (612) 646-7881 TWX: 910-563-3734
17. Kansas City, Missouri 64114 9208 Wyoming Place 816) $333-2445$ TWX: 910-771-2087
18. St. Louis, Missouri 63144 2814 South Brentwood Bivd. (314) 644.0220 TWX: 910-760-1670
19. New Orleans, Louisiana (504) $522-4359$
20. Skokle, Illinois 60076 5500 Howard Street (312) 677-0400 TWX: 910-223-3613
21. Indianapolis, Indiana 46205 3919 Meadows Dr. (317) 546-4891 TWX: 317-635-4300
22. Dayton, Ohio 45409 1250 W. Dorothy Lane (513) 298.0351 TWX: 513.944-0090
23. Southfield, Michigan 48076 24315 Northwestern Hwy. (313) 353-9100

TWX: 313-357-4425
24. Cleveland, Ohio 44129 5579 Pearl Road (216) 884.9209 TWX: 216-888-0715
25. Monroeville, Pa, 15146 2545 Moss Side Blvd. (412) 271-5227 TWX: 710-797-3650
26. Toronto, Ontario Hewlett-Packard (Canada) Ltd. 1415 Lawrence Avenue West (416) 249.9196 TWX: $610-492-2382$
27. Rochester, New York 14623 39 Saginaw Drive (716) 473-9500 TWX: 510-253-5981
28. Endicott, New York 13764 1219 Campville Rd. (607) 754-0050 TWX: 510-252-0890
29. Syracuse, New York 13211 5858 East Molloy Rd. (315) 454.2486 TWX: 710.541-0482
30. Ottawa, Ontario Hewlett-Packard (Canada) Ltd. 1762 Carling Avenue (613) $722-4223$ TWX: 610-562-1952
31. Montreal, Quebec Hewlett-Packard (Canada) Ltd. 8270 Mayrand Street 8270 Mayrand
(514) $735 \cdot 2273$ TWX: $610.421-3484$
32. Burlington, Mass. 01803 Middlesex Turnpike 617) 272.9000 TWX: 710-332-0382
33. Middletown, Conn. 06457 589 Saybrook Rd TWX. 710 . 428
34. Poughkeepsie, N.Y. 12601 82 Washington Street 914) 454.7330

TWX: 914.452-7425
35. New York New York 10021 236 East 75 th Street (212) 879.2023 TWX: $710.581-4376$
36. Englewood, New Jersey 07631 391 Grand Avenue (201) $567 \cdot 3933$
37. Eatontown, New Jersey (201) 542-0852
38. West Conshohocken, Pa. 19428 144 Elizabeth Street (215) 248-1600 and 828-6200 TWX: $510 \cdot 660-8715$
39. Camp Hill, Pennsylvania (717) 737.6791
40. Baltimore, Maryland 21207 6660 Security Blvd. TWX: 710.862
41. Rockville, Maryland 20852 12303 Twinbrook Pkwy. (301) 427.7560 TWX: 710-828-9684
42. Richmond, Virginia 23230 2112 Spencer Road TWX: 710.956
43. High Point, N.C. 27262 1923 N. Main Street (919) 882.6873 TWX: 510.926-1516
44. Atlanta, Georgia 30305 3110 Maple Drive, N.E. (404) 233.1141 TWX: 810-751-3283
45. Huntsville, Alabama 35802 2003 Byrd Spring Rd. S.W. (205) 881-4591 TWX: 510-579-2204
46. Oriando, Florida 32803 621 Commonwealth Ave. (305) 425.5541 TWX: 305-841-2568
47. St. Petersburg, Florida 33708 410-150th Ave., Madeira Beach 813) 391-0211 TWX: 813-391.0666
48. Miami, Florida 33125 2907 Northwest 7th St. (305) 635-6461
49. San Antonio, Texas 78226 (GOVERNMENT CONTRACTS) Hewlett-Packard Contract Marketing Division 225 Billy Mitchell Road (512) 434.4171 TWX: 512.571 .0955

HEWLETT
 hp PACKARD

[^0]: *Also see Coaxial and Waveguide Instruments (page 34) **For rack mount model add \$5 ***For rack mount model, $\$ 15$ less

[^1]: *Rack mount $\$ 5$ additional
 **HO1-8401A Leveler Amplifier (\$200) provides additional leveling-loop gain when required

[^2]: *Trade mark pat. pend.

